184 research outputs found

    Probing the AGN Unification Model at redshift z ∌\sim 3 with MUSE observations of giant Lyα\alpha nebulae

    Full text link
    A prediction of the classic active galactic nuclei (AGN) unification model is the presence of ionisation cones with different orientations depending on the AGN type. Confirmations of this model exist for present times, but it is less clear in the early Universe. Here, we use the morphology of giant Lyα\alpha nebulae around AGNs at redshift z∌\sim3 to probe AGN emission and therefore the validity of the AGN unification model at this redshift. We compare the spatial morphology of 19 nebulae previously found around type I AGNs with a new sample of 4 Lyα\alpha nebulae detected around type II AGNs. Using two independent techniques, we find that nebulae around type II AGNs are more asymmetric than around type I, at least at radial distances r>30r>30~physical kpc (pkpc) from the ionizing source. We conclude that the type I and type II AGNs in our sample show evidence of different surrounding ionising geometries. This suggests that the classical AGN unification model is also valid for high-redshift sources. Finally, we discuss how the lack of asymmetry in the inner parts (râ‰Č\lesssim30 pkpc) and the associated high values of the HeII to Lyα\alpha ratios in these regions could indicate additional sources of (hard) ionizing radiation originating within or in proximity of the AGN host galaxies. This work demonstrates that the morphologies of giant Lyα\alpha nebulae can be used to understand and study the geometry of high redshift AGNs on circum-nuclear scales and it lays the foundation for future studies using much larger statistical samples.Comment: 15 pages, 13 figures, accepted for publication in MNRA

    The Fundamental Plane of star formation in galaxies revealed by the EAGLE hydrodynamical simulations

    Get PDF
    We investigate correlations between different physical properties of star-forming galaxies in the ‘Evolution and Assembly of GaLaxies and their Environments’ (EAGLE) cosmological hydrodynamical simulation suite over the redshift range 0 ≀ z ≀ 4.5. A principal component analysis reveals that neutral gas fraction (fgas,neutral), stellar mass (Mstellar) and star formation rate (SFR) account for most of the variance seen in the population, with galaxies tracing a two-dimensional, nearly flat, surface in the three-dimensional space of fgas, neutral–Mstellar–SFR with little scatter. The location of this plane varies little with redshift, whereas galaxies themselves move along the plane as their fgas, neutral and SFR drop with redshift. The positions of galaxies along the plane are highly correlated with gas metallicity. The metallicity can therefore be robustly predicted from fgas, neutral, or from the Mstellar and SFR. We argue that the appearance of this ‘Fundamental Plane of star formation’ is a consequence of self-regulation, with the plane's curvature set by the dependence of the SFR on gas density and metallicity. We analyse a large compilation of observations spanning the redshift range 0 â‰Č z â‰Č 3, and find that such a plane is also present in the data. The properties of the observed Fundamental Plane of star formation are in good agreement with EAGLE's predictions

    Equivalent widths of Lyman α\alpha emitters in MUSE-Wide and MUSE-Deep

    Full text link
    The aim of this study is to better understand the connection between the Lyman α\alpha rest-frame equivalent width (EW0_0) and spectral properties as well as ultraviolet (UV) continuum morphology by obtaining reliable EW0_0 histograms for a statistical sample of galaxies and by assessing the fraction of objects with large equivalent widths. We used integral field spectroscopy from MUSE combined with broad-band data from the Hubble Space Telescope (HST) to measure EW0_0. We analysed the emission lines of 19201920 Lyman α\alpha emitters (LAEs) detected in the full MUSE-Wide (one hour exposure time) and MUSE-Deep (ten hour exposure time) surveys and found UV continuum counterparts in archival HST data. We fitted the UV continuum photometric images using the Galfit software to gain morphological information on the rest-UV emission and fitted the spectra obtained from MUSE to determine the double peak fraction, asymmetry, full-width at half maximum, and flux of the Lyman α\alpha line. The two surveys show different histograms of Lyman α\alpha EW0_0. In MUSE-Wide, 20%20\% of objects have EW0>240_0 > 240 \r{A}, while this fraction is only 11%11\% in MUSE-Deep and ≈16%\approx 16\% for the full sample. This includes objects without HST continuum counterparts (one-third of our sample), for which we give lower limits for EW0_0. The object with the highest securely measured EW0_0 has EW0=589±193_0=589 \pm 193 \r{A} (the highest lower limit being EW0=4464_0=4464 \r{A}). We investigate the connection between EW0_0 and Lyman α\alpha spectral or UV continuum morphological properties. The survey depth has to be taken into account when studying EW0_0 distributions. We find that in general, high EW0_0 objects can have a wide range of spectral and UV morphological properties, which might reflect that the underlying causes for high EW0_0 values are equally varied. (abridged)Comment: 28 pages, 21 + 1 figures, 7 + 1 tables, accepted for publication in A&

    Ectoparasites associated with the Bushveld gerbil (Gerbilliscus leucogaster) and the role of the host and habitat in shaping ectoparasite diversity and infestations

    Get PDF
    Rodents are known hosts for various ectoparasite taxa such as fleas, lice, ticks and mites. South Africa is recognized for its animal diversity, yet little is published about the parasite diversity associated with wild rodent species. By focusing on a wildlife-human/domestic animal interface, the study aims to record ectoparasite diversity and levels of infestations of the Bushveld gerbil, Gerbilliscus leucogaster, and to establish the relationship between ectoparasite infestation parameters and host- and habitat factors. Rodents (n = 127) were trapped in 2 habitat types (natural and agricultural) during 2014–2020. More than 6500 individuals of 32 epifaunistic species represented by 21 genera and belonging to 5 taxonomic groups (fleas, sucking lice, ticks, mesostigmatan mites and trombiculid mites) were collected. Mesostigmatan mites and lice were the most abundant and fleas and mesostigmatan mites the most prevalent groups. Flea and mesostigmatan mite numbers and mesostigmatan mite species richness was significantly higher on reproductively active male than female rodents. Only ticks were significantly associated with habitat type, with significantly higher tick numbers and more tick species on rodents in the natural compared to the agricultural habitat. We conclude that the level of infestation by ectoparasites closely associated with the host (fleas and mites) was affected by host-associated factors, while infestation by ectoparasite that spend most of their life in the external environment (ticks) was affected by habitat type

    Recovery and analysis of rest-frame UV emission lines in 2052 galaxies observed with MUSE at 1.5 < z < 6.4

    Get PDF
    Rest-frame ultraviolet (UV) emission lines probe electron densities, gas-phase abundances, metallicities, and ionization parameters of the emitting star-forming galaxies and their environments. The strongest main UV emission line, Lyα, has been instrumental in advancing the general knowledge of galaxy formation in the early universe. However, observing Lyα emission becomes increasingly challenging at z ≳ 6 when the neutral hydrogen fraction of the circumgalactic and intergalactic media increases. Secondary weaker UV emission lines provide important alternative methods for studying galaxy properties at high redshift. We present a large sample of rest-frame UV emission line sources at intermediate redshift for calibrating and exploring the connection between secondary UV lines and the emitting galaxies’ physical properties and their Lyα emission. The sample of 2052 emission line sources with 1.5 < z < 6.4 was collected from integral field data from the MUSE-Wide and MUSE-Deep surveys taken as part of Guaranteed Time Observations. The objects were selected through untargeted source detection (i.e., no preselection of sources as in dedicated spectroscopic campaigns) in the three-dimensional MUSE data cubes. We searched optimally extracted one-dimensional spectra of the full sample for UV emission features via emission line template matching, resulting in a sample of more than 100 rest-frame UV emission line detections. We show that the detection efficiency of (non-Lyα) UV emission lines increases with survey depth, and that the emission line strength of He IIλ1640 Å, [O III] λ1661 + O III] λ1666, and [Si III] λ1883 + Si III] λ1892 correlate with the strength of [C III] λ1907 + C III] λ1909. The rest-frame equivalent width (EW0) of [C III] λ1907 + C III] λ1909 is found to be roughly 0.22 ± 0.18 of EW0(Lyα). We measured the velocity offsets of resonant emission lines with respect to systemic tracers. For C IVλ1548 + C IVλ1551 we find that ΔvC IV â‰Č 250 km s−1, whereas ΔvLyα falls in the range of 250−500 km s−1 which is in agreement with previous results from the literature. The electron density ne measured from [Si III] λ1883 + Si III] λ1892 and [C III] λ1907 + C III] λ1909 line flux ratios is generally < 105 cm−3 and the gas-phase abundance is below solar at 12 + log10(O/H)≈8. Lastly, we used “PhotoIonization Model Probability Density Functions” to infer physical parameters of the full sample and individual systems based on photoionization model parameter grids and observational constraints from our UV emission line searches. This reveals that the UV line emitters generally have ionization parameter log10(U) ≈ −2.5 and metal mass fractions that scatter around Z ≈ 10−2, that is Z ≈ 0.66 Z⊙. Value-added catalogs of the full sample of MUSE objects studied in this work and a collection of UV line emitters from the literature are provided with this paper

    MusE GAs FLOw and Wind (MEGAFLOW) IX. The impact of gas flows on the relations between the mass, star formation rate and metallicity of galaxies

    Full text link
    We study the link between gas flow events and key galaxy scaling relations: the relations between star formation rate (SFR) and stellar mass (the main sequence, MS), gas metallicity and stellar mass (the mass-metallicity relation, MZR) and gas metallicity, stellar mass and SFR (the fundamental metallicity relation, FMR). Using all star-forming galaxies (SFGs) in the 22 MUSE fields of the MusE GAs FLOw and Wind (MEGAFLOW) survey, we derive the MS, MZR and FMR scaling relations for 385 SFGs with M=108−1011.5M = 10^8 - 10^{11.5} M⊙M_\odot at redshifts 0.35 < z < 0.85. Using the MUSE data and complementary X-Shooter spectra at 0.85 < z < 1.4, we determine the locations of 21 SFGs associated with inflowing or outflowing circumgalactic gas (i.e. with strong MgII absorption in background quasar spectra) relative to these scaling relations. Compared to a control sample of galaxies without gas flows (i.e., without MgII absorption within 70 kpc of the quasar), SFGs with inflow events (i.e., MgII absorption along the major axis) are preferentially located above the MS, while SFGs with ouflow events (i.e., MgII absorption along the minor axis) are preferentially more metal rich. Our observations support the scenario in which gas accretion increases the SFR while diluting the metal content and where circumgalactic outflows are found in more metal-rich galaxies.Comment: 13 pages, 8 figure

    The Lensed Lyman-Alpha MUSE Arcs Sample (LLAMAS)

    Get PDF
    Aims. We present the Lensed Lyman-Alpha MUSE Arcs Sample (LLAMAS) selected from MUSE and HST observations of 17 lensing clusters. The sample consists of 603 continuum-faint (−23 < MUV < −14) lensed Lyman-α emitters (producing 959 images) with secure spectroscopic redshifts between 2.9 and 6.7. Combining the power of cluster magnification with 3D spectroscopic observations, we were able to reveal the resolved morphological properties of 268 Lyman-α emitters. Methods. We used a forward-modeling approach to model both Lyman-α and rest-frame UV continuum emission profiles in the source plane and measure spatial extent, ellipticity, and spatial offsets between UV and Lyman-α emission. Results. We find a significant correlation between UV continuum and Lyman-α spatial extent. Our characterization of the Lyman-α halos indicates that the halo size is linked to the physical properties of the host galaxy (SFR, Lyman-α equivalent width, Lyman-α line FWHM). We find that 48% of Lyman-α halos are best fit by an elliptical emission distribution with a median axis ratio of q = 0.48. We observe that 60% of galaxies detected both in UV and Lyman-α emission show a significant spatial offset (ΔLyα − UV). We measure a median offset of ΔLyα − UV = 0.58 ± 0.14 kpc for the entire sample. By comparing the spatial offset values with the size of the UV component, we show that 40% of the offsets could be due to star-forming sub-structures in the UV component, while the larger offsets (60%) are more likely due to greater-distance processes such as scattering effects inside the circumgalactic medium or emission from faint satellites or merging galaxies. Comparisons with a zoom-in radiative hydrodynamics simulation of a typical Lyman-α emitting galaxy show a very good agreement with LLAMAS galaxies and indicate that bright star-formation clumps and satellite galaxies could produce a similar spatial offset distribution
    • 

    corecore