100 research outputs found

    Heart failure with reduced ejection fraction and monogenic dilated cardiomyopathy: distinct diseases? Insights from randomized controlled trials

    Get PDF
    The genetic component of heart failure with reduced ejection fraction (HFrEF) is traditionally considered as part of the non-ischaemic aetiology. Dilated cardiomyopathy (DCM) has been recognized as the most heterogeneous amongst the classical cardiomyopathy phenotypes, with >250 genes which have been causally related with the disease

    Camalexin Quantification in Arabidopsis thaliana Leaves Infected with Botrytis cinerea

    Get PDF
    Phytoalexins are heterogeneous low molecular mass secondary metabolites with antimicrobial activity produced in response to pathogen invasion attempts at the infection site and represent an important part of the plant defense repertoire. Camalexin (3-Thiazol-2â€Č-yl-indole) is a known phytoalexin first detected and isolated in Camelina sativa, from which it takes its name, infected with Alternaria brassicae (Browne et al., 1991). Production of camalexin is also induced in Arabidopsis thaliana leaves by a range of biotrophic and necrotrophic plant pathogens (bacteria, oomycetes, fungi and viruses) (Ahuja et al., 2012) as well as by abiotic stresses, such as UV and chemicals (e.g. acifluorfen, paraquat, chlorsulfuron and α-amino butyric acid) (Zhao et al., 1998; Tierens et al., 2002). Camalexin originates from tryptophan and CYP79B2 and CYP71B15 (PAD3) are P450 enzymes that catalyze important steps in its biosynthetic pathway (Glawischnig, 2007). In this protocol the detection and quantification of camalexin produced in Arabidopsis leaves infected with the necrotrophic fungus Botrytis cinerea is described

    Luminol-based Assay for Detection of Immunity Elicitor-induced Hydrogen Peroxide Production in Arabidopsis thaliana Leaves

    Get PDF
    In Arabidopsis thaliana, one of the very early immune-related responses induced after elicitor perception is the oxidative burst, i.e. reactive oxygen species (ROS) generation including superoxide anion and hydrogen peroxide (H2O2). ROS production plays different roles in a wide range of biotic and abiotic stress responses, including the closure of stomata and the regulation of cell expansion. In particular, elicitor-induced H2O2 is produced mainly by the membrane localized NAD(P)H oxidases RESPIRATORY BURST OXIDASE HOMOLOGUE D and F. In this protocol, we describe a simple and reproducible luminol/peroxidase-based assay to detect and evaluate immunity-related accumulation of H2O2 produced in Arabidopsis leaf discs treated with immunity elicitors, such as oligogalacturonides (OGs), flagellin (flg22) or the elongation factor-thermo-unstable (EF-Tu - elf18). This method is based on the detection of the luminescence released by excited-luminol molecules generated after the horseradish peroxidase (HRP)-catalyzed oxidation of luminol molecules in the presence of H2O2. Levels as well as duration of the luminescence are proportional to the amount of H2O2 produced by elicited leaf discs

    Simple Strategies to Modulate the pH-Responsiveness of Lignosulfonate-Based Delivery Systems

    Get PDF
    The extensive use of non-degradable microplastics in a wide plethora of daily life products is causing serious pollution problems. More ecofriendly solutions are therefore urgently needed. In this context, the use of lignin, a largely available aromatic polymer, may represent a viable option. Due to the self-assembly ability of its molecules, lignin is in fact an ideal matrix for the fabrication of nanostructures. In this study, lignosulfonate microcapsules containing a limonene core were prepared and characterized in terms of their dimensions and of the physicochemical characteristics of the capsule-forming lignosulfonate molecules. The main purpose is to elucidate the key properties governing the pH-responsive behavior of the capsules to be able to achieve better control over the release kinetics of the entrapped compound(s). The results demonstrate that both the molecular weight and the concentration of sulfonate groups are the most important factors in this respect. Based on these findings, two strategies were followed to further tailor the capsules’ behavior: (i) fractionation of the starting lignosulfonate by solvent extraction and (ii) introduction of a specific additive in the formulation. The first approach permitted to fabricate highly resistant capsules both in acidic, as well as in alkaline conditions, while in the second case the chemical structure of the additive, the diester diveratryl sebacate, allowed for fast kinetics of release, as values above 70% were reached after 24 h of incubation at pH 4 and pH 12

    Scylax of Caryanda, Pseudo-Scylax, and the Paris Periplus: Reconsidering the Ancient Tradition of a Geographical Text

    Get PDF
    The Periplus preserved in the manuscript Parisinus suppl. gr. 443, and erroneously ascribed to Scylax of Caryanda (sixth century BC), is the oldest extant specimen of ancient Greek periplography: it belongs to the second half of the fourth century. In the present article, all the testimonies on the ancient tradition of both Scylax and the Paris Periplus are carefully evaluated. The aim is to determine when and why the Paris Periplus was mistakenly ascribed to Scylax and to clear any doubts on the alleged authorship of this ancient geographic work. The confusion, or the wilful falsification, is evident in Strabo: he knew of Scylax’s voyage in the East and at the same time was acquainted with the text of the Paris Periplus, which he ascribed to this famous ancient seafarer. Greek and Latin authors of the Roman Imperial age knew the Paris Periplus, but many followed slavishly the erroneous ascription to Scylax of Caryanda. When Marcianus of Heraclea in the early Byzantine age collected his corpus of ancient Greek geographers he also ascribed the Paris Periplus to Scylax, thus handing down the error to the copyist of the Paris. suppl. gr. 443

    Lignin-based nano-enabled agriculture: A mini-review

    Get PDF
    Nowadays sustainable nanotechnological strategies to improve the efficiency of conventional agricultural practices are of utmost importance. As a matter of fact, the increasing use of productive factors in response to the growing food demand plays an important role in determining the environmental impact of agriculture. In this respect, low-efficiency conventional practices are becoming obsolete. On the other hand, the exploitation of nanoscaled systems for the controlled delivery of fertilizers, pesticides and herbicides shows great potential towards the development of sustainable, efficient and resilient agricultural processes, while promoting food security. In this context, lignin - especially in the form of its nanostructures - can play an important role as sustainable biomaterial for nano-enabled agricultural applications. In this review, we present and discuss the current advancements in the preparation of lignin nanoparticles for the controlled release of pesticides, herbicides, and fertilizers, as well as the latest findings in terms of plant response to their application. Special attention has been paid to the state-of-the-art literature concerning the release performance of these lignin-based nanomaterials, whose efficiency is compared with the conventional approaches. Finally, the major challenges and the future scenarios of lignin-based nano-enabled agriculture are considered

    Enzymatic synthesis of biobased polyesters utilizing aromatic diols as the rigid component

    Get PDF
    In the present work, the biocatalyzed synthesis of a series of aromatic-aliphatic polyesters based on the aliphatic diesters dimethyl succinate, dimethyl adipate and dimethyl sebacate and the aromatic diols 2,5-bis(hydroxymethyl)furan, 3,4-bis(hydroxymethyl)furan and 2,6-pyridinedimethanol were investigated. A similar series of polyesters based on the petroleum-based 1,3-benzenedimethanol, 1,4-benzenedimethanol and 1,4-benzenediethanol were also synthesized for comparison. Data show that the enzymatic syntheses were successful starting from all diols, with the obtained polymers having isolated yields between 67 and over 90%, number average molecular weights between 3000 Da and 5000 Da and degree of polymerization (DP) of 6–18 (based on the used aliphatic diesters and aromatic diols) when polymerized in diphenyl ether as solvent. Only using 3,4-bis(hydroxymethyl)furan as the diol led to shorter oligomers with isolated yields around 50% and DPs of 3–5. DSC and TGA thermal analyses show clear correlation between polymer crystallinity and aliphatic carbon chain length of the diester

    Structural investigation of poly(ethylene furanoate) polymorphs

    Get PDF
    α and ÎČ crystalline phases of poly(ethylene furanoate) (PEF) were determined using X-ray powder diffraction by structure resolution in direct space and Rietveld refinement. Moreover, the α' structure of a PEF sample was refined from data previously reported for PEF fiber. Triclinic α-PEF a = 5.729 Å, b = 7.89 Å, c = 9.62 Å, α = 98.1°, ÎČ = 65.1°, Îł = 101.3°; monoclinic α'-PEF a = 5.912 Å, b = 6.91 Å, c = 19.73 Å, α = 90°, ÎČ = 90°, Îł = 104.41°, and monoclinic ÎČ-PEF a = 5.953 Å, b = 6.60 Å, c = 10.52 Å, α = 90°, ÎČ = 107.0°, Îł = 90° were determined as the best fitting of X-ray diffraction (XRD) powder patterns. Final atomic coordinates are reported for all polymorphs. In all cases PEF chains adopted an almost planar configuration

    Modulation of physicochemical and antioxidant properties of Pickering emulsions using colloidal lignin particles based on kraft softwood and hardwood acetone fractions

    Get PDF
    Colloidal lignin particles (CLPs) emerge as a sustainable alternative to traditional, fossil-based emulsion stabilizers. However, effectively outperforming the conventional ingredients requires addressing the challenges posed by lignin heterogeneity and structural complexity. In this study, one-step acetone fractionation was applied to softwood and hardwood kraft lignins to tackle the issue. The resulting soluble (AS) and insoluble (AI) fractions, along with the pristine lignins, underwent thorough characterization and were used to create CLPs through the hydrotropic precipitation. The acetone fraction-derived CLPs were tested for the first time as Pickering stabilizers. Notably, a strong correlation emerged between the structural traits of each lignin sample and the properties of the resulting Pickering emulsions. Such correlation allowed for a fine-tuning of their physicochemical and antioxidant features. The AS fractions, characterized by higher phenolic OH content and lower molecular weight, led to CLPs with larger sizes and reduced hydrophilic character compared to those derived from AI- and pristine lignins. The fraction-derived CLPs exhibited superior emulsifying capacity and imparted long-term stability to the formed emulsions. Moreover, the resulting Pickering emulsions showed high potential as antioxidant agents, proving their ability as multifunctional systems. Overall, this work demonstrates how the unique properties of lignin can be selectively enhanced through acetone fractionation method and seamlessly transferred to Pickering emulsions. This advancement promotes the use of lignin in high-value-added sectors such as cosmetics and personal care.The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CIMO UIDB/00690/2020 (DOI: 10.544 99/UIDB/00690/2020) and UIDP/00690/2020 (DOI: 10.544 99/UIDP/00690/2020); SusTEC LA/P/0007/2020 (DOI: 10.54499/ LA/P/0007/2020); LSRE-LCM UIDB/50020/2020 (DOI: 10.544 99/UIDB/50020/2020) and UIDP/50020/2020 (DOI: 10.544 99/UIDP/50020/2020); and ALiCE LA/P/0045/2020 (DOI: 10.54499/ LA/P/0045/2020). FCT for the Ph.D. research grant of G. Colucci (2021.05215.BD). Daniele Massari, Valeria Gagliardi, and Maryam RahimiHaghighi for the technical support and assistance to conduct experiments. Suzano for the kind supply of Ecolig lignin. IngevityTM for the kind supply of Indulin AT lignin. COST Action LignoCOST (CA17128), supported by COST (European Cooperation in Science and Technology), in promoting interaction, exchange of knowledge, and collaborations in the field of lignin valorizationinfo:eu-repo/semantics/publishedVersio

    Investigating the factors that influence resistance rise of PIM-1 membranes in nonaqueous electrolytes

    Get PDF
    As redox active macromolecules are introduced to the materials repertoire of redox flow batteries (RFBs), nanoporous membranes, such as polymers of intrinsic microporosity (PIMs), are emerging as a viable separation strategy. Although their selectivity has been demonstrated, PIM-based membranes suffer from time-dependent resistance rise in nonaqueous electrolytes. Here, we study this phenomenon as a function of membrane thickness, electrolyte flow rate, and solvent washing using a diagnostic flow cell configuration. We find that the rate and magnitude of resistance rise can be significantly reduced through the combination of low electrolyte flow rate and solvent prewash. Further, our results indicate that, since the increase is not associated with irreversible chemical and structural changes, the membrane performance can be recovered via ex-situ or in-situ solvent washes. Keywords: Energy storage, Redox flow battery, Polymer of intrinsic microporosity, Size-exclusion membranes, Performance recovery, Cell resistanc
    • 

    corecore