215 research outputs found

    Screening an in house alkaloids library using Voltage-Sensor Probes for new modulators of voltage-gated sodium channels

    Get PDF
    Voltage-gated sodium channels (Nav) are molecular targets of clinically used drugs for treatments of various diseases (epilepsy, chronic pain, cardiac arrhythmia…) and also of numerous animal and plant neurotoxins. The development of easy-to-use screening assays for searching new ligands from chemicals libraries, animal venoms or plant extracts represents a challenge of a great interest to generate therapeutic hits. Here, we used the mammalian GH3B6 pituitary cell line, which constitutively expresses three different neuronal Nav channel isoforms (Nav1.2, Nav1.3 and Nav1.6), to identify novel compounds of pharmacological interest from a library of in-house vegetal alkaloids. The screening is based on a method using Voltage-Sensor Probes (VSPs) that we adapted to detect both activators and blockers of Nav channels. Over the 84 pure alkaloids or plant extracts that were screened, 17 increased the VSP signal. They operated as gating modifier, showing an action mechanism similar to that of batrachotoxin (BTX), known to strongly inhibit Nav channel inactivation. The remaining 67 plant products were assessed for their potency to inhibit BTX-induced VSP signal. We further selected 11 alkaloids as efficient Nav channels inhibitors. We focused our attention on two structural analogs belonging to the aporphine family, liriodenine and oxostephanine, which differ only by a methoxy group. Whereas liriodenine has been already described as a Nav channels blocker, oxostephanine has not been yet documented as an ion channel modulator. In conclusion, the novel VSPs-based screening assay we developed is a suitable method to challenge the discovery and to assess the activity of novel ligands on Nav channels

    Voltage Sensor Probes as an efficient tool to screen for new modulators of voltage-gated sodium channels

    Get PDF
    Voltage-gated sodium channels (Nav) constitute the molecular targets of clinically used drugs for treatments of various diseases (epilepsies, chronic pain, cardiac arrythmies…) and also of numerous toxins from animals and plants. The development of useful screening assay for the discovery of new ligands in/ from chemicals libraries or animal venoms and either plant extract still represents a challenge of great interest. Here, we used a mammalian GH3 cells that constitutively express at least three different brain Nav channels isoforms (Nav1.1, Nav1.2, Nav1.3 and Nav1.6) in order to identify in a library of in-house natural alkaloids, novel compounds of therapeutical interest. For this screening, we developed a method based on the use of Voltage Sensor Probes (VSPs) that we adapted to detect both activators and blockers of Nav channels. Among 62 compounds tested, 5 isoquinolines appeared as potent Nav channels inhibitors. Other compounds were characterized as specific gating modifier of Nav channels. While most of these alkaloids have been already described in the literature, their abilities to act on Nav channels were unknown. In conclusion, we demonstrated the potency of this novel screening method using VSPs to identify novel ligands of Nav channels of therapeutical interests. References: 1. Salat, K. et al. (2014) EOID 23:1093-1104 2. Yu, F.H. et al (2003) Genome Biol. 4

    Achieving a Molecular Remission before Allogeneic Stem Cell Transplantation in Adult Patients with Philadelphia Chromosome Positive Acute Lymphoblastic Leukemia: Impact on Relapse and Long Term Outcome

    Get PDF
    Allogeneic stem cell transplantation (alloHSCT) in first complete remission (CR1) remains the consolidation therapy of choice in Philadelphia-positive (Ph+) acute lymphoblastic leukemia (ALL). The prognostic value of measurable levels of minimal residual disease (MRD) at time of conditioning is a matter of debate. We analyzed the predictive relevance of MRD levels before transplantation on the clinical outcome of Ph+ ALL patients treated with chemotherapy and imatinib in 2 consecutive prospective clinical trials. MRD evaluation before transplantation was available for 65 of the 73 patients who underwent an alloHSCT in CR1. A complete or major molecular response at time of conditioning was achieved in 24 patients (37%), whereas 41 (63%) remained carriers of any other positive MRD level in the bone marrow. MRD negativity at time of conditioning was associated with a significant benefit in terms of risk of relapse at 5 years, with a relapse incidence of 8% compared with 39% for patients with MRD positivity (P\u2009=\u2009.007). However, thanks to the post-transplantation use of tyrosine kinase inhibitors (TKIs), disease-free survival was 58% versus 41% (P\u2009=\u2009.17) and overall survival was 58% versus 49% (P\u2009=\u2009.55) in MRD-negative compared with MRD-positive patients, respectively. The cumulative incidence of nonrelapse mortality was similar in the 2 groups. Achieving a complete molecular remission before transplantation reduces the risk of leukemia relapse even though TKIs may still rescue some patients relapsing after transplantation

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR
    corecore