308 research outputs found

    Room temperature spin filtering in epitaxial cobalt-ferrite tunnel barriers

    Full text link
    We report direct experimental evidence of room temperature spin filtering in magnetic tunnel junctions (MTJs) containing CoFe2O4 tunnel barriers via tunneling magnetoresistance (TMR) measurements. Pt(111)/CoFe2O4(111)/gamma-Al2O3(111)/Co(0001) fully epitaxial MTJs were grown in order to obtain a high quality system, capable of functioning at room temperature. Spin polarized transport measurements reveal significant TMR values of -18% at 2 K and -3% at 290 K. In addition, the TMR ratio follows a unique bias voltage dependence that has been theoretically predicted to be the signature of spin filtering in MTJs containing magnetic barriers. CoFe2O4 tunnel barriers therefore provide a model system to investigate spin filtering in a wide range of temperatures.Comment: 6 pages, 3 figure

    Long-term variability of AGN at hard X-rays

    Get PDF
    Variability at all observed wavelengths is a distinctive property of AGN. Hard X-rays provide us with a view of the innermost regions of AGN, mostly unbiased by absorption along the line of sight. Swift/BAT offers the unique opportunity to follow, on time scales of days to years and with a regular sampling, the 14-195 keV emission of the largest AGN sample available up to date for this kind of investigation. We study the amplitude of the variations, and their dependence on sub-class and on energy, for a sample of 110 radio quiet and radio loud AGN selected from the BAT 58-month survey. About 80% of the AGN in the sample are found to exhibit significant variability on months to years time scales, radio loud sources being the most variable. The amplitude of the variations and their energy dependence are incompatible with variability being driven at hard X-rays by changes of the absorption column density. In general, the variations in the 14-24 and 35-100 keV bands are well correlated, suggesting a common origin of the variability across the BAT energy band. However, radio quiet AGN display on average 10% larger variations at 14-24 keV than at 35-100 keV and a softer-when-brighter behavior for most of the Seyfert galaxies with detectable spectral variability on month time scale. In addition, sources with harder spectra are found to be more variable than softer ones. These properties are generally consistent with a variable power law continuum, in flux and shape, pivoting at energies >~ 50 keV, to which a constant reflection component is superposed. When the same time scales are considered, the timing properties of AGN at hard X-rays are comparable to those at lower energies, with at least some of the differences possibly ascribable to components contributing differently in the two energy domains (e.g., reflection, absorption).Comment: 17 pages, 11 figures, accepted for publication in A&

    Evaluation of Cytotoxicity and Genotoxicity of Acacia aroma Leaf Extracts

    Get PDF
    Acacia aroma, native plant from San Luis, Argentina, is commonly used as antiseptic and for healing of wounds. The present study was conducted to investigate the in vitro cytotoxicity and genotoxicity of hot aqueous extract (HAE) and ethanolic extract (EE) of A. aroma. The cytotoxic activity was assayed by neutral red uptake assay on Vero cell. Cell treatment with a range from 100 to 5000 g/mL of HAE and EE showed that 500 g/mL and 100 g/mL were the maximum noncytotoxic concentrations, respectively. The CC50 was 658 g/mL for EE and 1020 g/mL for HAE. The genotoxicity was tested by the single-cell gel electrophoresis comet assay. The results obtained in the evaluation of DNA cellular damage exposed to varied concentrations of the HAE showed no significant genotoxic effect at range of 1–20 mg/mL. The EE at 20 mg/mL showed moderate genotoxic effect related to the increase of the DNA percentage contained in tail of the comet; DNA was classified in category 2. At concentrations below 5 mg/mL, the results of cytotoxicity and genotoxicity of aqueous and ethanolic extracts of Acacia aroma guarantee the safety at cell and genomic level. However further studies are needed for longer periods including animal models to confirm the findings.Fil: Mattana, Claudia Maricel. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia; ArgentinaFil: Cangiano, Maria de Los Angeles. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Alcaraz, María Luciana. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Sosa, A.. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia; ArgentinaFil: Escobar, Franco Matias. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Sabini, C.. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales; ArgentinaFil: Sabini, Liliana Ines. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales; ArgentinaFil: Laciar, Analia Liliana. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia; Argentin

    Exchange bias in GeMn nanocolumns: the role of surface oxidation

    Full text link
    We report on the exchange biasing of self-assembled ferromagnetic GeMn nanocolumns by GeMn-oxide caps. The x-ray absorption spectroscopy analysis of this surface oxide shows a multiplet fine structure that is typical of the Mn2+ valence state in MnO. A magnetization hysteresis shift |HE|~100 Oe and a coercivity enhancement of about 70 Oe have been obtained upon cooling (300-5 K) in a magnetic field as low as 0.25 T. This exchange bias is attributed to the interface coupling between the ferromagnetic nanocolumns and the antiferromagnetic MnO-like caps. The effect enhancement is achieved by depositing a MnO layer on the GeMn nanocolumns.Comment: 7 pages, 5 figure

    Reprodução assexuada de carobinha em função do tipo de estaca e uso de fito-hormônio.

    Get PDF
    O objetivo desta pesquisa foi verificar o surgimento de folhas e/ou raízes em função do tipo de estaca e solução de fito-hormônio na planta medicinal carobinha (Jacaranda decurrens). O experimento teve 4 tratamentos e 8 repetições totalizando 32 parcelas

    Overexpression of Osmyb4 enhances compatible solute accumulation and increases stress tolerance of arabidopsis thaliana

    Get PDF
    In this paper, we report the metabolic and molecular changes in response to cold and drought induced in Osmyb4 transgenic Arabidopsis thaliana compared with the wildtype (WT). The rice Osmyb4 gene codes for a transcription factor (Myb4) induced by cold treatment and, in Arabidopsis transgenic plants, improves cold and freezing tolerance [Vannini C, Locatelli F, Bracale M, Magnani E, Marsoni M, Osnato M, Mattana M, Baldoni E, Coraggio I (2004) Plant J 37: 115-127]. Here, we report the ability of Myb4 to induce also drought tolerance in Arabidopsis transgenic plants. By the use of nuclear magnetic resonance (NMR) and enzymatic assays, we showed that several compatible solutes (glucose, fructose, sucrose, proline, glycine betaine and sinapoyl malate) accumulate in higher amount in Osmyb4-overexpressing plants with respect to the WT, both under normal and stress conditions. Considering proline, we also found that in transgenic plants the levels of the mRNAs coding for \u3941- pyrroline-5-carboxylate synthase (EC not assigned) and for \u3941- pyrroline-5-carboxylate dehydrogenase (EC 1.5.1.12) were higher and lower, respectively. The constitutive activation of several stress-inducible pathways and different kinetics in the accumulation of several metabolites, in Myb4 transgenic plants, may represent an advantage to prepare plants to face the stress condition. Moreover, these results taken together suggest that Myb4 integrates the activation of multiple components of stress response

    Sulodexide counteracts endothelial dysfunction induced by metabolic or non-metabolic stresses through activation of the autophagic program

    Get PDF
    OBJECTIVE: Endothelial dysfunction (ED) predisposes to venous thrombosis (VT) and post-thrombotic syndrome (PTS), a long-term VT-related complication. Sulodexide (SDX) is a highly purified glycosaminoglycan with antithrombotic, pro-fibrinolytic and anti-inflammatory activity used in the treatment of chronic venous disease (CVD), including patients with PTS. SDX has recently obtained clinical evidence in the “extension therapy” after initial-standard anticoagulant treatment for the secondary prevention of recurrent deep vein thrombosis (DVT). Herein, we investigated how SDX counteracts ED. MATERIALS AND METHODS: Human umbilical vein endothelial cells (HUVEC) were used. Metabolic and non metabolic-induced ED was induced by treating with methylglyoxal (MGO) or irradiation (IR), respectively. Bafilomycin A1 was used to inhibit autophagy. The production of reactive oxygen species (ROS), tetrazolium bromide (MTT) assay for cell viability, terminal de-oxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay for cell apoptosis, Real-time PCR and Western blot analysis for gene and protein expression were used. RESULTS: SDX protected HUVEC from MGO- or IR-induced apoptosis by counteracting the activation of the intrinsic and extrinsic caspase cascades. The cytoprotective effects of SDX resulted from a reduction in a) ROS production, b) neo-synthesis and release of pro-inflammatory cytokines (TNFα, IL1, IL6, IL8), c) DNA damage induced by MGO or IR. These effects were reduced when autophagy was inhibited. CONCLUSIONS: Data herein collected indicate the ability of SDX to counteract ED induced by metabolic or non-metabolic stresses by involving the intracellular autophagy pathway. Our experience significantly increases the knowledge of the mechanisms of action of SDX against ED and supports the use of SDX in the treatment of CVD, PTS and in the secondary prevention of recurrent DVT

    Monte Carlo Modeling of Spin FETs Controlled by Spin-Orbit Interaction

    Full text link
    A method for Monte Carlo simulation of 2D spin-polarized electron transport in III-V semiconductor heterojunction FETs is presented. In the simulation, the dynamics of the electrons in coordinate and momentum space is treated semiclassically. The density matrix description of the spin is incorporated in the Monte Carlo method to account for the spin polarization dynamics. The spin-orbit interaction in the spin FET leads to both coherent evolution and dephasing of the electron spin polarization. Spin-independent scattering mechanisms, including optical phonons, acoustic phonons and ionized impurities, are implemented in the simulation. The electric field is determined self-consistently from the charge distribution resulting from the electron motion. Description of the Monte Carlo scheme is given and simulation results are reported for temperatures in the range 77-300 K.Comment: 18 pages, 7 figure
    • …
    corecore