5 research outputs found

    Data_Sheet_1_An implantable neurophysiology platform: Broadening research capabilities in free-living and non-traditional animals.docx

    No full text
    Animal-borne sensors that can record and transmit data (“biologgers”) are becoming smaller and more capable at a rapid pace. Biologgers have provided enormous insight into the covert lives of many free-ranging animals by characterizing behavioral motifs, estimating energy expenditure, and tracking movement over vast distances, thereby serving both scientific and conservational endpoints. However, given that biologgers are usually attached externally, access to the brain and neurophysiological data has been largely unexplored outside of the laboratory, limiting our understanding of how the brain adapts to, interacts with, or addresses challenges of the natural world. For example, there are only a handful of studies in free-living animals examining the role of sleep, resulting in a wake-centric view of behavior despite the fact that sleep often encompasses a large portion of an animal’s day and plays a vital role in maintaining homeostasis. The growing need to understand sleep from a mechanistic viewpoint and probe its function led us to design an implantable neurophysiology platform that can record brain activity and inertial data, while utilizing a wireless link to enable a suite of forward-looking capabilities. Here, we describe our design approach and demonstrate our device’s capability in a standard laboratory rat as well as a captive fox squirrel. We also discuss the methodological and ethical implications of deploying this new class of device “into the wild” to fill outstanding knowledge gaps.</p

    Dantzer Lab Wiki

    No full text

    The 2018 Lake Louise Acute Mountain Sickness Score

    Full text link
    The Lake Louise Acute Mountain Sickness (AMS) scoring system has been a useful research tool since first published in 1991. Recent studies have shown that disturbed sleep at altitude, one of the five symptoms scored for AMS, is more likely due to altitude hypoxia per se, and is not closely related to AMS. To address this issue, and also to evaluate the Lake Louise AMS score in light of decades of experience, experts in high altitude research undertook to revise the score. We here present an international consensus statement resulting from online discussions and meetings at the International Society of Mountain Medicine World Congress in Bolzano, Italy, in May 2014 and at the International Hypoxia Symposium in Lake Louise, Canada, in February 2015. The consensus group has revised the score to eliminate disturbed sleep as a questionnaire item, and has updated instructions for use of the score
    corecore