64 research outputs found

    Assignment of exclusive spectrum licenses in Japan : use of an auction for the licensee selection process

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Engineering Systems Division, Technology and Policy Program, 2006.Includes bibliographical references (p. 154-159).The demand for spectrum resources has increased in the past decade due to the flourishing wireless industry worldwide. This change requires Japan's Ministry of Internal Affairs and Communications (MIC) to establish a transparent, fair and efficient spectrum allocation process that will enable it to select an optimal set of licensees to realize efficient spectrum use. This thesis proposes an auction system that assigns exclusive spectrum licenses to firms competing in the Japanese wireless industry. MIC currently uses a comparative examination system, which unfortunately lacks certain features the Ministry is required to address. An auction system is an alternative, already employed by many countries to allocate spectrum resources optimally, to secure a transparent and fair decision-making process, and to raise revenue for national coffers. The Diet's approval of legislation authorizing MIC to use auctions is one obstacle because it requires much time and effort to persuade political parties, incumbents, and newcomers of the value of the auction system over the current system. Another challenge to the effectiveness of the auction system is its design, which must be built-to-order based on the goals of each government and specific market conditions.(cont.) This research covers four areas: (1) The development and transition of the Japanese mobile industry; (2) Analysis of stakeholders' attitudes toward the introduction of the auction system; (3) A proposed strategy for developing an auction design based on an analysis of English, Germany and Clock Auction Design; (4) The design of an auction system for Japan's specific cases.by Hironori Matsunaga.S.M

    Structural and dynamic behavior of lithium iron polysulfide Li₈FeS₅ during charge–discharge cycling

    Get PDF
    Lithium sulfide (Li₂S) is one of the promising positive electrode materials for next-generation rechargeable lithium batteries. To improve the electrochemical performance of electronically resistive Li₂S, a Fe-doped Li₂S-based positive electrode material (Li₈FeS₅) has been recently designed and found to exhibit excellent discharge capacity close to 800 mAh g⁻¹. In the present study, we investigate the structural and dynamic behavior of Li₈FeS₅ during charge–discharge cycling. In Li₈FeS₅, Fe ions are incorporated into the Li₂S framework structure. The Li₂S-based structure is found to transform to an amorphous phase during the charge process. The delithiation-induced amorphization is associated with the formation of S-S polysulfide bonds, indicating charge compensation by S ions. The crystalline to non-crystalline structural transformation is reversible, but Li ions are extracted from the material via a two-phase reaction, although they are inserted via a single-phase process. These results indicate that the delithiation/lithiation mechanism is neither a topotactic extraction/insertion nor a conversion-type reaction. Moreover, the activation energies for Li ion diffusion in the pristine, delithiated, and lithiated materials are estimated to be in the 0.30–0.37 eV range, which corresponds to the energy barriers for local hopping of Li ions along the Li sublattice in the Li₂S framework

    Chemotherapy with low-dose capecitabine as palliative treatment in a patient with metastatic breast cancer: a case report

    Get PDF
    Chemotherapeutic agents are rarely used for symptom management in patients under palliative care setting. This is because chemotherapeutic agents not only have limited efficacy in palliative treatment but are also known to exert severe adverse effects. We describe our experience with a patient with metastatic breast cancer who was successfully treated with low-dose capecitabine, without the development of any severe toxicities and with significant improvement in activities of daily living (ADL) and quality of life (QOL)

    Trapping-Induced Enhancement of Photocatalytic Activity on Brookite TiO<inf>2</inf> Powders: Comparison with Anatase and Rutile TiO<inf>2</inf> Powders

    Get PDF
    Brookite TiO2 is a promising material for active photocatalysts. However, the principal mechanism that determines the distinctive photocatalytic activity between anatase, rutile, and brookite TiO2 has not yet been fully elucidated. Therefore, in this work, we studied the behavior of photogenerated electrons and holes in these TiO2 powders by using femtosecond to millisecond time-resolved visible to mid-IR absorption spectroscopy. We found that most of the photogenerated electrons in brookite TiO2 are trapped at powder defects within a few ps. This electron trapping decreases the number of surviving free electrons, but it extends the lifetime of holes as well as the trapped electrons because the probability of electrons to encounter holes is decreased by this electron-trapping. As a result, the number of surviving holes increases, which is beneficial for photocatalytic oxidation. In contrast, the reactivity of electrons is decreased to some extent by trapping, but they still remain active for photocatalytic reductions. Electron trapping also takes place on anatase and rutile TiO2 powders, but the trap-depth in anatase is too shallow to extend the lifetime of holes and that of rutile is too deep than the thermal energy (kT) at room temperature for the electron-consuming reactions. As a result of the moderate depth of the electron trap in brookite, both electrons and holes are reactive for photocatalytic reductions and oxidations. These results have clearly demonstrated that the presence of an appropriate depth of the electron trap can effectively contribute to enhance the overall photocatalytic activity

    Left atrial metastasis of renal cell carcinoma: a case report and review of the literature

    Get PDF
    Background: Cardiac metastasis of renal cell carcinoma is an exceptional event, particularly when there is lack of inferior vena cava involvement. Indeed, only a few cases have been reported worldwide thus far. Moreover, discussion of treatment and follow-up strategies for cardiac metastasis of renal cell carcinoma is important because of the high risk of sudden death. Case presentation. We report the case of a 75-year-old Japanese man with metastatic tumor in the left atrium from renal cell carcinoma. He had a history of right renal cell carcinoma, for which he had undergone hand-assisted laparoscopic nephrectomy. Lung and bone metastases were detected after nephrectomy, and treatment with interferon-alpha was initiated. After disease progression, he was treated concurrently with targeted molecular therapy and radiotherapy for bone metastasis. After these therapies, a 42 × 24 mm mass was found on transthoracic echocardiography in left atrium without involvement of the right atrium or inferior vena cava. The provisional diagnosis was metastatic mass or myxoma, and surgical resection was performed. Histopathological examination led to a final diagnosis of metastatic tumor from clear cell renal cell carcinoma. Conclusion: Cardiac metastasis, metastasis to the left atrium in particular, is rare in patients with renal cell carcinoma. In our study, surgery of the cardiac mass was effective to avoid sudden death and quality of life decline resulting from heart failure. We describe this case and review cardiac metastasis of renal cell carcinoma

    PIM kinases facilitate lentiviral evasion from SAMHD1 restriction via Vpx phosphorylation

    Get PDF
    Lentiviruses have evolved to acquire an auxiliary protein Vpx to counteract the intrinsic host restriction factor SAMHD1. Although Vpx is phosphorylated, it remains unclear whether such phosphorylation indeed regulates its activity toward SAMHD1. Here we identify the PIM family of serine/threonine protein kinases as the factors responsible for the phosphorylation of Vpx and the promotion of Vpx-mediated SAMHD1 counteraction. Integrated proteomics and subsequent functional analysis reveal that PIM family kinases, PIM1 and PIM3, phosphorylate HIV-2 Vpx at Ser13 and stabilize the interaction of Vpx with SAMHD1 thereby promoting ubiquitin-mediated proteolysis of SAMHD1. Inhibition of the PIM kinases promotes the antiviral activity of SAMHD1, ultimately reducing viral replication. Our results highlight a new mode of virus–host cell interaction in which host PIM kinases facilitate promotion of viral infectivity by counteracting the host antiviral system, and suggest a novel therapeutic strategy involving restoration of SAMHD1-mediated antiviral response

    Long-term follow-up of production of IgM and IgG antibodies against SARS-CoV-2 among patients with COVID-19

    Get PDF
    The patients diagnosed with coronavirus disease 2019 (COVID-19) produce IgM and IgG antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the frequency and duration of antibody production still need to be fully understood. In the present study, we investigated the duration of antibody production after SARS-CoV-2 infection. The patients diagnosed with COVID-19 were monitored over twelve months for the production of SARS-CoV-2 IgM and IgG antibodies, and the characteristics of these patients were examined. Forty-five patients diagnosed with COVID-19 were enrolled, and thirty-four patients were followed up until they tested negative for SARS-CoV-2 IgM and IgG antibodies or up to twelve months after the date of a negative SARS-CoV-2 polymerase chain reaction (PCR) result. The positivity rates of SARS-CoV-2 IgM and IgG antibodies were 27.3% and 68.2% when SARS-CoV-2 PCR was negative, 20.6% and 70.6% after one month, 8.8% and 52.9% after three months, and 0.0% and 14.7% after six months, respectively. Moreover, we compared patients with milder conditions who did not require oxygen administration with those with severe conditions which required oxygen administration. The positivity rate of SARS-CoV-2 IgG antibodies was significantly higher in patients with severe conditions than in those with milder conditions on the date of a negative SARS-CoV-2 PCR result and after one month and three months, but not after six months. Patients with more severe COVID-19 produced more SARS-CoV-2 IgG antibodies. Moreover, it is suggested that the duration of IgG antibody production is independent of COVID-19 severity

    Intelligent Chiral Sensing Based on Supramolecular and Interfacial Concepts

    Get PDF
    Of the known intelligently-operating systems, the majority can undoubtedly be classed as being of biological origin. One of the notable differences between biological and artificial systems is the important fact that biological materials consist mostly of chiral molecules. While most biochemical processes routinely discriminate chiral molecules, differentiation between chiral molecules in artificial systems is currently one of the challenging subjects in the field of molecular recognition. Therefore, one of the important challenges for intelligent man-made sensors is to prepare a sensing system that can discriminate chiral molecules. Because intermolecular interactions and detection at surfaces are respectively parts of supramolecular chemistry and interfacial science, chiral sensing based on supramolecular and interfacial concepts is a significant topic. In this review, we briefly summarize recent advances in these fields, including supramolecular hosts for color detection on chiral sensing, indicator-displacement assays, kinetic resolution in supramolecular reactions with analyses by mass spectrometry, use of chiral shape-defined polymers, such as dynamic helical polymers, molecular imprinting, thin films on surfaces of devices such as QCM, functional electrodes, FET, and SPR, the combined technique of magnetic resonance imaging and immunoassay, and chiral detection using scanning tunneling microscopy and cantilever technology. In addition, we will discuss novel concepts in recent research including the use of achiral reagents for chiral sensing with NMR, and mechanical control of chiral sensing. The importance of integration of chiral sensing systems with rapidly developing nanotechnology and nanomaterials is also emphasized

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
    corecore