274 research outputs found
Circular Polarization from Gamma-ray Burst Afterglows
We investigate the circular polarization (CP) from Gamma-Ray Burst (GRB)
afterglows. We show that a tangled magnetic field cannot generate CP without an
ordered magnetic field because there is always an oppositely directed field, so
that no handedness exists. This implies the observation of CP could be a useful
probe of an ordered field, which carries valuable information on the GRB
central engine. By solving the transfer equation of polarized radiation, we
find that the CP reaches 1% at radio frequencies and 0.01% at optical for the
forward shock, and 10-1% at radio and 0.1-0.01% at optical for the reverse
shock.Comment: 12 pages, 3 figure
Tables of Hyperonic Matter Equation of State for Core-Collapse Supernovae
We present sets of equation of state (EOS) of nuclear matter including
hyperons using an SU_f(3) extended relativistic mean field (RMF) model with a
wide coverage of density, temperature, and charge fraction for numerical
simulations of core collapse supernovae. Coupling constants of Sigma and Xi
hyperons with the sigma meson are determined to fit the hyperon potential
depths in nuclear matter, U_Sigma(rho_0) ~ +30 MeV and U_Xi(rho_0) ~ -15 MeV,
which are suggested from recent analyses of hyperon production reactions. At
low densities, the EOS of uniform matter is connected with the EOS by Shen et
al., in which formation of finite nuclei is included in the Thomas-Fermi
approximation. In the present EOS, the maximum mass of neutron stars decreases
from 2.17 M_sun (Ne mu) to 1.63 M_sun (NYe mu) when hyperons are included. In a
spherical, adiabatic collapse of a 15 star by the hydrodynamics
without neutrino transfer, hyperon effects are found to be small, since the
temperature and density do not reach the region of hyperon mixture, where the
hyperon fraction is above 1 % (T > 40 MeV or rho_B > 0.4 fm^{-3}).Comment: 23 pages, 6 figures (Fig.3 and related comments on pion potential are
corrected in v3.
Reconstructing the Primordial Spectrum with CMB Temperature and Polarization
We develop a new method to reconstruct the power spectrum of primordial
curvature perturbations, , by using both the temperature and polarization
spectra of the cosmic microwave background (CMB). We test this method using
several mock primordial spectra having non-trivial features including the one
with an oscillatory component, and find that the spectrum can be reconstructed
with a few percent accuracy by an iterative procedure in an ideal situation in
which there is no observational error in the CMB data. In particular, although
the previous ``cosmic inversion'' method, which used only the temperature
fluctuations, suffered from large numerical errors around some specific values
of that correspond to nodes in a transfer function, these errors are found
to disappear almost completely in the new method.Comment: 18 pages, 17 figures, submitted to PR
Reconstructing the primordial power spectrum - a new algorithm
We propose an efficient and model independent method for reconstructing the
primordial power spectrum from Cosmic Microwave Background (CMB) and large
scale structure observations. The algorithm is based on a Monte Carlo principle
and therefore very simple to incorporate into existing codes such as Markov
Chain Monte Carlo. The algorithm has been used on present cosmological data to
test for features in the primordial power spectrum. No significant evidence for
features is found, although there is a slight preference for an overall bending
of the spectrum, as well as a decrease in power at very large scales. We have
also tested the algorithm on mock high precision CMB data, calculated from
models with non-scale invariant primordial spectra. The algorithm efficiently
extracts the underlying spectrum, as well as the other cosmological parameters
in each case. Finally we have used the algorithm on a model where an artificial
glitch in the CMB spectrum has been imposed, like the ones seen in the WMAP
data. In this case it is found that, although the underlying cosmological
parameters can be extracted, the recovered power spectrum can show significant
spurious features, such as bending, even if the true spectrum is scale
invariant.Comment: 22 pages, 12 figures, matches JCAP published versio
Primordial Power Spectrum Reconstruction
In order to reconstruct the initial conditions of the universe it is
important to devise a method that can efficiently constrain the shape of the
power spectrum of primordial matter density fluctuations in a model-independent
way from data. In an earlier paper we proposed a method based on the wavelet
expansion of the primordial power spectrum. The advantage of this method is
that the orthogonality and multiresolution properties of wavelet basis
functions enable information regarding the shape of to be
encoded in a small number of non-zero coefficients. Any deviation from
scale-invariance can then be easily picked out. Here we apply this method to
simulated data to demonstrate that it can accurately reconstruct an input
, and present a prescription for how this method should be used
on future data.Comment: 4 pages, 2 figures. JCAP accepted versio
Scale dependence of the primordial spectrum from combining the three-year WMAP, Galaxy Clustering, Supernovae, and Lyman-alpha forests
We probe the scale dependence of the primordial spectrum in the light of the
three-year WMAP (WMAP3) alone and WMAP3 in combination with the other
cosmological observations such as galaxy clustering and Type Ia Supernova
(SNIa). We pay particular attention to the combination with the Lyman
(Ly) forest. Different from the first-year WMAP (WMAP1), WMAP3's
preference on the running of the scalar spectral index on the large scales is
now fairly independent of the low CMB multipoles . A combination with the
galaxy power spectrum from the Sloan Digital Sky Survey (SDSS) prefers a
negative running to larger than 2, regardless the presence of low
CMB () or not. On the other hand if we focus on the
Power Law CDM cosmology with only six parameters (matter density
, baryon density , Hubble Constant , optical
depth , the spectral index, , and the amplitude, , of the
scalar perturbation spectrum) when we drop the low CMB contributions
WMAP3 is consistent with the Harrison-Zel'dovich-Peebles scale-invariant
spectrum ( and no tensor contributions) at . When assuming
a simple power law primordial spectral index or a constant running, in case one
drops the low contributions () WMAP3 is consistent
with the other observations better, such as the inferred value of .
We also find, using a spectral shape with a minimal extension of the running
spectral index model, LUQAS CROFT Ly and SDSS Ly exhibit
somewhat different preference on the spectral shape.Comment: 16 pages, 13 figures Revtex
Cosmology with CMB anisotropy
Measurements of CMB anisotropy and, more recently, polarization have played a
very important role allowing precise determination of various parameters of the
`standard' cosmological model. The expectation of the paradigm of inflation and
the generic prediction of the simplest realization of inflationary scenario in
the early universe have also been established -- `acausally' correlated initial
perturbations in a flat, statistically isotropic universe, adiabatic nature of
primordial density perturbations. Direct evidence for gravitational instability
mechanism for structure formation from primordial perturbations has been
established. In the next decade, future experiments promise to strengthen these
deductions and uncover the remaining crucial signature of inflation -- the
primordial gravitational wave background.Comment: Plenary talk at the IXth. International Workshop on High Energy
Physics Phenomenology (WHEPP-9), Institute of Physics, Bhubaneshwar, India.
Jan 3-14, 2006; To appear in the Proceedings to be published in Pramana; 12
pages, 2 figure
`Standard' Cosmological model & beyond with CMB
Observational Cosmology has indeed made very rapid progress in the past
decade. The ability to quantify the universe has largely improved due to
observational constraints coming from structure formation Measurements of CMB
anisotropy and, more recently, polarization have played a very important role.
Besides precise determination of various parameters of the `standard'
cosmological model, observations have also established some important basic
tenets that underlie models of cosmology and structure formation in the
universe -- `acausally' correlated initial perturbations in a flat,
statistically isotropic universe, adiabatic nature of primordial density
perturbations. These are consistent with the expectation of the paradigm of
inflation and the generic prediction of the simplest realization of
inflationary scenario in the early universe. Further, gravitational instability
is the established mechanism for structure formation from these initial
perturbations. The signature of primordial perturbations observed as the CMB
anisotropy and polarization is the most compelling evidence for new, possibly
fundamental, physics in the early universe. The community is now looking beyond
the estimation of parameters of a working `standard' model of cosmology for
subtle, characteristic signatures from early universe physics.Comment: 16 pages, 6 figures, Plenary talk, Proc. of GR-19, Mexico City,
Mexico (Jul 5-9, 2010). To appear in a special issue in Class. Q. Gra
Detailed optical and near-infrared polarimetry, spectroscopy and broadband photometry of the afterglow of GRB 091018: Polarisation evolution
[Abridged] A number of phenomena have been observed in GRB afterglows that
defy explanation by simple versions of the standard fireball model, leading to
a variety of new models. Polarimetry can be a major independent diagnostic of
afterglow physics, probing the magnetic field properties and internal structure
of the GRB jets. In this paper we present the first high quality multi-night
polarimetric light curve of a Swift GRB afterglow, aimed at providing a well
calibrated dataset of a typical afterglow to serve as a benchmark system for
modelling afterglow polarisation behaviour. In particular, our dataset of the
afterglow of GRB 091018 (at redshift z=0.971) comprises optical linear
polarimetry (R band, 0.13 - 2.3 days after burst); circular polarimetry (R
band) and near-infrared linear polarimetry (Ks band). We add to that high
quality optical and near-infrared broadband light curves and spectral energy
distributions as well as afterglow spectroscopy. The linear polarisation varies
between 0 and 3%, with both long and short time scale variability visible. We
find an achromatic break in the afterglow light curve, which corresponds to
features in the polarimetric curve. We find that the data can be reproduced by
jet break models only if an additional polarised component of unknown nature is
present in the polarimetric curve. We probe the ordered magnetic field
component in the afterglow through our deep circular polarimetry, finding
P_circ < 0.15% (2 sigma), the deepest limit yet for a GRB afterglow, suggesting
ordered fields are weak, if at all present. Our simultaneous R and Ks band
polarimetry shows that dust induced polarisation in the host galaxy is likely
negligible.Comment: 20 pages, 14 figures, 3 tables. Accepted for publication in MNRAS.
Some figures are reduced in quality to comply with arXiv size requirement
- …