346 research outputs found
Generalized Cauchy means
Given two means M and N, the operator MM,NMM,N assigning to a given mean μ the mean MM,N(μ)(x,y)=M(μ(x,N(x,y)),μ(N(x,y),y)) was defined in Berrone and Moro (Aequationes Math 60:1–14, 2000) in connection with Cauchy means: the Cauchy mean generated by the pair f, g of continuous and strictly monotonic functions is the unique solution μ to the fixed point equation MA(f),A(g)(μ)=μ, where A(f) and A(g) are the quasiarithmetic means respectively generated by f and g. In this article, the operator MM,NMM,N is studied under less restrictive conditions and a general fixed point theorem is derived from an explicit formula for the iterates MnM,NMM,Nn . The concept of class of generalized Cauchy means associated to a given family of mixing pairs of means is introduced and some distinguished families of pairs are presented. The question of equality in these classes of means remains a challenging open problem.Fil: Berrone, Lucio Renato. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
Mangiferin: A Promising Anticancer Bioactive
Of late, several biologically active antioxidants from natural products have been investigated by the researchers in order to combat the root cause of carcinogenesis, i.e., oxidative stress. Mangiferin, a therapeutically active C-glucosylated xanthone, is extracted from pulp, peel, seed, bark and leaf of Mangifera indica. These polyphenols of mangiferin exhibit antioxidant properties and tend to decrease the oxygen-free radicals, thereby reducing the DNA damage. Indeed, its capability to modulate several key inflammatory pathways undoubtedly helps in stalling the progression of carcinogenesis. The current review article emphasizes an updated account on the patents published on the chemopreventive action of Mangiferin, apoptosis induction made on various cancer cells, along with proposed antioxidative activities and patent mapping of other important therapeutic properties. Considering it as promising polyphenol, this paper would also summarize the diverse molecular targets of Mangiferin
New generalized fuzzy metrics and fixed point theorem in fuzzy metric space
In this paper, in fuzzy metric spaces (in the sense of Kramosil and Michalek (Kibernetika 11:336-344, 1957)) we introduce the concept of a generalized fuzzy metric which is the extension of a fuzzy metric. First, inspired by the ideas of Grabiec (Fuzzy Sets Syst. 125:385-389, 1989), we define a new G-contraction of Banach type with respect to this generalized fuzzy metric, which is a generalization of the contraction of Banach type (introduced by M Grabiec). Next, inspired by the ideas of Gregori and Sapena (Fuzzy Sets Syst. 125:245-252, 2002), we define a new GV-contraction of Banach type with respect to this generalized fuzzy metric, which is a generalization of the contraction of Banach type (introduced by V Gregori and A Sapena). Moreover, we provide the condition guaranteeing the existence of a fixed point for these single-valued contractions. Next, we show that the generalized pseudodistance J:X×X→[0,∞) (introduced by Włodarczyk and Plebaniak (Appl. Math. Lett. 24:325-328, 2011)) may generate some generalized fuzzy metric NJ on X. The paper includes also the comparison of our results with those existing in the literature
Reducible means and reducible inequalities
It is well-known that if a real valued function acting on a convex set
satisfies the -variable Jensen inequality, for some natural number , then, for all , it fulfills the -variable Jensen
inequality as well. In other words, the arithmetic mean and the Jensen
inequality (as a convexity property) are both reducible. Motivated by this
phenomenon, we investigate this property concerning more general means and
convexity notions. We introduce a wide class of means which generalize the
well-known means for arbitrary linear spaces and enjoy a so-called reducibility
property. Finally, we give a sufficient condition for the reducibility of the
-convexity property of functions and also for H\"older--Minkowski type
inequalities
Means and covariance functions for geostatistical compositional data: an axiomatic approach
This work focuses on the characterization of the central tendency of a sample
of compositional data. It provides new results about theoretical properties of
means and covariance functions for compositional data, with an axiomatic
perspective. Original results that shed new light on the geostatistical
modeling of compositional data are presented. As a first result, it is shown
that the weighted arithmetic mean is the only central tendency characteristic
satisfying a small set of axioms, namely continuity, reflexivity and marginal
stability. Moreover, this set of axioms also implies that the weights must be
identical for all parts of the composition. This result has deep consequences
on the spatial multivariate covariance modeling of compositional data. In a
geostatistical setting, it is shown as a second result that the proportional
model of covariance functions (i.e., the product of a covariance matrix and a
single correlation function) is the only model that provides identical kriging
weights for all components of the compositional data. As a consequence of these
two results, the proportional model of covariance function is the only
covariance model compatible with reflexivity and marginal stability
A composite functional equation from algebraic aspect
In this paper we discuss the composite functional equation
f(x+2f(y))=f(x)+y+f(y)
on an Abelian group. This equation originates from Problem 10854 of the American Mathematical Monthly. We give an algebraic description of the solutions on uniquely 3-divisible Abelian groups, and then we construct all solutions f of this equation on finite Abelian groups without elements of order 3 and on divisible Abelian groups without elements of order 3 including the additive group of real numbers
Translation Representations and Scattering By Two Intervals
Studying unitary one-parameter groups in Hilbert space (U(t),H), we show that
a model for obstacle scattering can be built, up to unitary equivalence, with
the use of translation representations for L2-functions in the complement of
two finite and disjoint intervals.
The model encompasses a family of systems (U (t), H). For each, we obtain a
detailed spectral representation, and we compute the scattering operator, and
scattering matrix. We illustrate our results in the Lax-Phillips model where (U
(t), H) represents an acoustic wave equation in an exterior domain; and in
quantum tunneling for dynamics of quantum states
- …
