5,706 research outputs found
Roadmap on the theoretical work of BinaMIcS
We review the different theoretical challenges concerning magnetism in
interacting binary or multiple stars that will be studied in the BinaMIcS
(Binarity and Magnetic Interactions in various classes of Stars) project during
the corresponding spectropolarimetric Large Programs at CFHT and TBL. We
describe how completely new and innovative topics will be studied with BinaMIcS
such as the complex interactions between tidal flows and stellar magnetic
fields, the MHD star-star interactions, and the role of stellar magnetism in
stellar formation and vice versa. This will strongly modify our vision of the
evolution of interacting binary and multiple stars.Comment: 2 pages, proceeding of IAUS 302 Magnetic fields throughout stellar
evolution, correct list of author
The relationship between IR, optical, and UV extinction
An analysis is presented for the variability of absolute IR, optical, and UV extinction, A(sub lambda), derived through the ratio of total-to-selective extinction, R, for 31 lines of sight for which reliable UV extinction parameters were derived. These data sample a wide range of environments and are characterized by 2.5 is less than or equal to R is less than or equal to 6.0. It was found that there is a strong linear dependence between extinction expressed as A(sub lambda)/A(sub V) and 1/R for 1.25 micron is less than or equal to lambda is less than or equal to 0.12 micron. Differences in the general shape of extinction curves are largely due to variations in shape of optical/near-UV extinction corresponding to changes in R, with A(sub lambda)/A(sub V) decreasing for increasing R. From a least-squares fit of the observed R-dependence as a function of wavelength for 0.8/micron is less than or greater than 1/lambda is less than or equal to 8.3/micron, an analytic expression was generated from which IR, optical, and UV extinction curves of the form A(sub lambda)/A(sub V) can be reproduced with reasonable accuracy from a knowledge of R. It was also found that the absolute bump strength normalized to A(sub V) shows a general decrease with increasing R, suggesting that some fraction of bump grains may be selectively incorporated into coagulated grains. Finally, it was found that absolute extinction normalized by suitably chosen color indices results in a minimization of the R-dependence of portions of the UV curve, allowing A(sub lambda) to be estimated for these wavelengths independent of R
The Warm Ionized Medium in the Milky Way and Other Galaxies
Observations of the "Warm Ionized Medium" (or, equivalently, the "Diffuse
Ionized Gas") of the local ISM, the Perseus arm in the Milky Way, and also in
several other galaxies show strong [NII]6563 (~H-alpha in some cases) and
[SII]6717/[NII]6583 = 0.6 - 0.7 in all locations and objects. Other line ratios
(e.g., [O III]5007/H-beta) vary considerably. Simple photoionization models
reproduce the observed spectra, providing extra heating beyond that supplied by
photoionization is assumed (Reynolds, Haffner, & Tufte 1999). With observed
gas-phase abundances (not solar), the line ratios in the local arm at b = 0 deg
are fitted with no extra heating and (S/H) = 13 ppm (solar is 20 ppm). Local
gas observed at b = -35 deg requires extra heating of about gamma = 0.75, where
gamma is the extra heating in units of 10^{-25} erg H^{-1} s^{-1}. In the
Perseus arm, there are similar results, with a domposition consistent with the
Galactic abundance gradient. The requirements for NGC 891 are similar to the
Perseus arm: little or no extra heating at |z| = 1 kpc and gamma 3 at 2 kpc. In
NGC 891 there is also an increase of 5007/H-alpha with |z| that can only come
about if most of the ionizing radiation is supplied by stars with T~50000 K.
Either their radiation must propagate from the plane to high |z| through very
little intervening matter, or else the stars are located at high |z|. The total
power requirement of the extra heating is <15% of the photoionization power.
[O~II]3727/H-beta can serve as a useful diagnostic of extra heating, but
[S~III] 9065,9531/H-alpha is not useful in this regard.Comment: 32 pages, including 2 figures. To appear in November 20 Ap
The dust temperature distribution in prestellar cores
We have computed the dust temperature distribution to be expected in a
pre-protostellar core in the phase prior to the onset of gravitational
instability. We have done this in the approximation that the heating of the
dust grains is solely due to the attenuated external radiation field and that
the core is optically thin to its own radiation. This permits us to consider
non spherically symmetric geometries. We predict the intensity distributions of
our model cores at millimeter and sub-millimeter wavelengths and compare with
observations of the well studied object L1544. We have also developed an
analytical approximation for the temperature at the center of spherically
symmetric cores and we compare this with the numerical calculations. Our
results show (in agreement with Evans et al. 2001) that the temperatures in the
nuclei of cores of high visual extinction (> 30 magnitudes) are reduced to
values of below ~8 K or roughly half of the surface temperature. This has the
consequence that maps at wavelengths shortward of 1.3 mm see predominantly the
low density exterior of pre-protostellar cores. It is extremely difficult to
deduce the true density distribution from such maps alone. We have computed the
intensity distribution expected on the basis of the models of Ciolek & Basu
(2000) and compared with the observations of L1544. The agreement is good with
a preference for higher inclinations (37 degrees instead of 16) than that
adopted by Ciolek & Basu (2000). We find that a simple extension of the
analytic approximation allows a reasonably accurate calculation of the dust
temperature as a function of radius in cores with density distributions
approximating those expected for Bonnor-Ebert spheres and suggest that this may
be a useful tool for future calculations of the gas temperature in such cores.Comment: 14 latex pages, 10 ps figures, A&A accepte
Diagnoses to unravel secular hydrodynamical processes in rotating main sequence stars
(Abridged) We present a detailed analysis of the main physical processes
responsible for the transport of angular momentum and chemical species in the
radiative regions of rotating stars. We focus on cases where meridional
circulation and shear-induced turbulence only are included in the simulations.
Our analysis is based on a 2-D representation of the secular hydrodynamics,
which is treated using expansions in spherical harmonics. We present a full
reconstruction of the meridional circulation and of the associated fluctuations
of temperature and mean molecular weight along with diagnosis for the transport
of angular momentum, heat and chemicals. In the present paper these tools are
used to validate the analysis of two main sequence stellar models of 1.5 and 20
Msun for which the hydrodynamics has been previously extensively studied in the
literature. We obtain a clear visualization and a precise estimation of the
different terms entering the angular momentum and heat transport equations in
radiative zones. This enables us to corroborate the main results obtained over
the past decade by Zahn, Maeder, and collaborators concerning the secular
hydrodynamics of such objects. We focus on the meridional circulation driven by
angular momentum losses and structural readjustements. We confirm
quantitatively for the first time through detailed computations and separation
of the various components that the advection of entropy by this circulation is
very well balanced by the barotropic effects and the thermal relaxation during
most of the main sequence evolution. This enables us to derive simplifications
for the thermal relaxation on this phase. The meridional currents in turn
advect heat and generate temperature fluctuations that induce differential
rotation through thermal wind thus closing the transport loop.Comment: 16 pages, 18 figures. Accepted for publication in A&
Detecting individual gravity modes in the Sun: Chimera or reality?
Over the past 15 years, our knowledge of the interior of the Sun has
tremendously progressed by the use of helioseismic measurements. However, to go
further in our understanding of the solar core, we need to measure gravity (g)
modes. Thanks to the high quality of the Doppler-velocity signal measured by
GOLF/SoHO, it has been possible to unveil the signature of the asymptotic
properties of the solar g modes, thus obtaining a hint of the rotation rate in
the core. However, the quest for the detection of individual g modes is not yet
over. In this work, we apply the latest theoretical developments to guide our
research using GOLF velocity time series. In contrary to what was thought till
now, we are maybe starting to identify individual low-frequency g modes...Comment: Highlight of Astronomy (HoA) proceedings of the JD-11, IAU 2009. 2
pages, 1 figur
The BinaMIcS project: understanding the origin of magnetic fields in massive stars through close binary systems
It is now well established that a fraction of the massive (M>8 Msun) star
population hosts strong, organised magnetic fields, most likely of fossil
origin. The details of the generation and evolution of these fields are still
poorly understood. The BinaMIcS project takes an important step towards the
understanding of the interplay between binarity and magnetism during the
stellar formation and evolution, and in particular the genesis of fossil
fields, by studying the magnetic properties of close binary systems. The
components of such systems are most likely formed together, at the same time
and in the same environment, and can therefore help us to disentangle the role
of initial conditions on the magnetic properties of the massive stars from
other competing effects such as age or rotation. We present here the main
scientific objectives of the BinaMIcS project, as well as preliminary results
from the first year of observations from the associated ESPaDOnS and Narval
spectropolarimetric surveys.Comment: To appear in New Windows on Massive Stars, proceedings of the IAU
Symposium 30
Effects of rotational mixing on the asteroseismic properties of solar-type stars
The influence of rotational mixing on the evolution and asteroseismic
properties of solar-type stars is studied. Rotational mixing changes the global
properties of a solar-type star with a significant increase of the effective
temperature resulting in a shift of the evolutionary track to the blue part of
the HR diagram. These differences are related to changes of the chemical
composition, because rotational mixing counteracts the effects of atomic
diffusion leading to larger helium surface abundances for rotating models than
for non-rotating ones. Higher values of the large frequency separation are then
found for rotating models than for non-rotating ones at the same evolutionary
stage, because the increase of the effective temperature leads to a smaller
radius and hence to an increase of the stellar mean density. Rotational mixing
also has a considerable impact on the structure and chemical composition of the
central stellar layers by bringing fresh hydrogen fuel to the core, thereby
enhancing the main-sequence lifetime. The increase of the central hydrogen
abundance together with the change of the chemical profiles in the central
layers result in a significant increase of the values of the small frequency
separations and of the ratio of the small to large separations for models
including shellular rotation. This increase is clearly seen for models with the
same age sharing the same initial parameters except for the inclusion of
rotation as well as for models with the same global stellar parameters and in
particular the same location in the HR diagram. By computing rotating models of
solar-type stars including the effects of a dynamo that possibly occurs in the
radiative zone, we find that the efficiency of rotational mixing is strongly
reduced when the effects of magnetic fields are taken into account, in contrast
to what happens in massive stars.Comment: 11 pages, 15 figures, accepted for publication in A&
Vector competence of Aedes japonicus for chikungunya and dengue viruses
The Asian bush mosquito Aedes japonicus japonicus (Theobald, 1901) [=Ochlerotatus japonicus (sensu Reinert et al., 2004) =Hulecoeteomyia japonica (sensu Reinert et al., 2006)], has invaded large parts of North America and has recently started to spread in Central-Western Europe. The species is suspected to act as a bridge vector of West Nile virus but nothing or very little is known about its vector competence for Chikungunya and Dengue viruses. Here, we report on experiments of laboratory infections of Ae. japonicus with CHIKV and DENV, demonstrating that the species has a vector potential for both viruses. Considering the high abundance of the species in urban environments and its ability to feed on human, these results plead to include this species when processing risk assessments for mosquito-borne diseases
- …
