3 research outputs found

    Tabletop imaging of structural evolutions in chemical reactions

    Full text link
    The introduction of femto-chemistry has made it a primary goal to follow the nuclear and electronic evolution of a molecule in time and space as it undergoes a chemical reaction. Using Coulomb Explosion Imaging we have shot the first high-resolution molecular movie of a to and fro isomerization process in the acetylene cation. So far, this kind of phenomenon could only be observed using VUV light from a Free Electron Laser [Phys. Rev. Lett. 105, 263002 (2010)]. Here we show that 266 nm ultrashort laser pulses are capable of initiating rich dynamics through multiphoton ionization. With our generally applicable tabletop approach that can be used for other small organic molecules, we have investigated two basic chemical reactions simultaneously: proton migration and C=C bond-breaking, triggered by multiphoton ionization. The experimental results are in excellent agreement with the timescales and relaxation pathways predicted by new and definitively quantitative ab initio trajectory simulations

    Tabletop imaging using 266nm femtosecond laser pulses, for characterization of structural evolution in, single molecule, chemical reactions

    No full text
    We have demonstrated a generally applicable tabletop approach utilizing a 266nm femtosecond laser pulse pump, 800nm pulse probe, coupled with Coulomb explosion imaging (CEI). We have investigated two simple chemical reactions in C2H2 + simultaneously: proton transfer and C=C bond-breaking, triggered by multiphoton ionization to excited states. Too and fro proton migration results are in excellent agreement with new ab initio trajectory simulations which predict isomerization timescales and pathways.Peer reviewed: YesNRC publication: Ye

    Über die Badgersche Regel II. Tabellen der Bindungsabstände, Kraftkonstanten und Bindungsgrade

    No full text
    corecore