252 research outputs found

    The Transiting System GJ1214: High-Precision Defocused Transit Observations and a Search for Evidence of Transit Timing Variation

    Get PDF
    Aims: We present 11 high-precision photometric transit observations of the transiting super-Earth planet GJ1214b. Combining these data with observations from other authors, we investigate the ephemeris for possible signs of transit timing variations (TTVs) using a Bayesian approach. Methods: The observations were obtained using telescope-defocusing techniques, and achieve a high precision with random errors in the photometry as low as 1mmag per point. To investigate the possibility of TTVs in the light curve, we calculate the overall probability of a TTV signal using Bayesian methods. Results: The observations are used to determine the photometric parameters and the physical properties of the GJ1214 system. Our results are in good agreement with published values. Individual times of mid-transit are measured with uncertainties as low as 10s, allowing us to reduce the uncertainty in the orbital period by a factor of two. Conclusions: A Bayesian analysis reveals that it is highly improbable that the observed transit times is explained by TTV, when compared with the simpler alternative of a linear ephemeris.Comment: Submitted to A&

    I. Flux and color variations of the quadruply imaged quasar HE 0435-1223

    Get PDF
    aims: We present VRi photometric observations of the quadruply imaged quasar HE 0435-1223, carried out with the Danish 1.54m telescope at the La Silla Observatory. Our aim was to monitor and study the magnitudes and colors of each lensed component as a function of time. methods: We monitored the object during two seasons (2008 and 2009) in the VRi spectral bands, and reduced the data with two independent techniques: difference imaging and PSF (Point Spread Function) fitting.results: Between these two seasons, our results show an evident decrease in flux by ~0.2-0.4 magnitudes of the four lensed components in the three filters. We also found a significant increase (~0.05-0.015) in their V-R and R-i color indices. conclusions: These flux and color variations are very likely caused by intrinsic variations of the quasar between the observed epochs. Microlensing effects probably also affect the brightest "A" lensed component.Comment: 10 pages, 8 figure

    OGLE-2009-BLG-092/MOA-2009-BLG-137: A Dramatic Repeating Event With the Second Perturbation Predicted by Real-Time Analysis

    Get PDF
    We report the result of the analysis of a dramatic repeating gravitational microlensing event OGLE-2009-BLG-092/MOA-2009-BLG-137, for which the light curve is characterized by two distinct peaks with perturbations near both peaks. We find that the event is produced by the passage of the source trajectory over the central perturbation regions associated with the individual components of a wide-separation binary. The event is special in the sense that the second perturbation, occurring 100\sim 100 days after the first, was predicted by the real-time analysis conducted after the first peak, demonstrating that real-time modeling can be routinely done for binary and planetary events. With the data obtained from follow-up observations covering the second peak, we are able to uniquely determine the physical parameters of the lens system. We find that the event occurred on a bulge clump giant and it was produced by a binary lens composed of a K and M-type main-sequence stars. The estimated masses of the binary components are M1=0.69±0.11 MM_1=0.69 \pm 0.11\ M_\odot and M2=0.36±0.06 MM_2=0.36\pm 0.06\ M_\odot, respectively, and they are separated in projection by r=10.9±1.3 AUr_\perp=10.9\pm 1.3\ {\rm AU}. The measured distance to the lens is DL=5.6±0.7 kpcD_{\rm L}=5.6 \pm 0.7\ {\rm kpc}. We also detect the orbital motion of the lens system.Comment: 18 pages, 5 figures, 1 tabl

    Characterizing Low-Mass Binaries From Observation of Long Time-scale Caustic-crossing Gravitational Microlensing Events

    Get PDF
    Despite astrophysical importance of binary star systems, detections are limited to those located in small ranges of separations, distances, and masses and thus it is necessary to use a variety of observational techniques for a complete view of stellar multiplicity across a broad range of physical parameters. In this paper, we report the detections and measurements of 2 binaries discovered from observations of microlensing events MOA-2011-BLG-090 and OGLE-2011-BLG-0417. Determinations of the binary masses are possible by simultaneously measuring the Einstein radius and the lens parallax. The measured masses of the binary components are 0.43 MM_{\odot} and 0.39 MM_{\odot} for MOA-2011-BLG-090 and 0.57 MM_{\odot} and 0.17 MM_{\odot} for OGLE-2011-BLG-0417 and thus both lens components of MOA-2011-BLG-090 and one component of OGLE-2011-BLG-0417 are M dwarfs, demonstrating the usefulness of microlensing in detecting binaries composed of low-mass components. From modeling of the light curves considering full Keplerian motion of the lens, we also measure the orbital parameters of the binaries. The blended light of OGLE-2011-BLG-0417 comes very likely from the lens itself, making it possible to check the microlensing orbital solution by follow-up radial-velocity observation. For both events, the caustic-crossing parts of the light curves, which are critical for determining the physical lens parameters, were resolved by high-cadence survey observations and thus it is expected that the number of microlensing binaries with measured physical parameters will increase in the future.Comment: 8 pages, 5 figures, 4 table
    corecore