91 research outputs found

    Die Totalsynthese von (+)-Ratjadon

    Get PDF
    [no abstract

    Unified Synthesis of Polycyclic Alkaloids by Complementary Carbonyl Activation

    Get PDF
    A complementary dual carbonyl activation strategy for the synthesis of polycyclic alkaloids has been developed. Successful applications include the synthesis of tetracyclic alkaloids harmalanine and harmalacinine, pentacyclic indoloquinolizidine alkaloid nortetoyobyrine, and octacyclic β-carboline alkaloid peganumine A. The latter synthesis features a protecting-group-free assembly and an asymmetric disulfonimide-catalyzed cyclization. Furthermore, formal syntheses of hirsutine, deplancheine, 10-desbromoarborescidine A, and oxindole alkaloids rhynchophylline and isorhynchophylline have been achieved. Finally, a concise synthesis of berberine alkaloid ilicifoline B was completed

    Oxidation of allylic and benzylic alcohols to aldehydes and carboxylic acids

    Get PDF
    An oxidation of allylic and benzylic alcohols to the corresponding carboxylic acids is effected by merging a Cu-catalyzed oxidation using O2 as a terminal oxidant with a subsequent chlorite oxidation (Lindgren oxidation). The protocol was optimized to obtain pure products without chromatography or crystallization. Interception at the aldehyde stage allowed for Z/E-isomerization, thus rendering the oxidation stereoconvergent with respect to the configuration of the starting material

    Transforming terpene feedstock into polyketide architecture

    Get PDF
    The Cu-catalyzed synthesis of skipped 1,4-dienes from allylic acetates and vinyl-Grignard reagents is key to bidirectional modifications of acyclic terpene acetates. As a result, trisubstituted double bond containing subunits can be readily transferred into complex polyketides from inexpensive bulk terpenes

    Crossed intramolecular Rauhut−Currier-type reactions via dienamine activation

    Get PDF
    Trabajo presentado como póster al 3.Tag der Chemie celebrado en Dortmund (Alemania) en 2010.The intramolecular Rauhut−Currier reaction creates a carbon−carbon bond between two tethered Michael acceptors. Previous asymmetric versions have relied on 1,4-additions of chiral nucleophilic catalysts. Herein, we investigate a novel strategy that involves the formation of electron rich dienamines as key intermediates. Our methodology provides an efficient entry to the iridoid framework.Financial support was provided by the DFG (SPP1179), the Fonds der Chemischen Industrie (Dozentenstipendium to M. C.), the Alexander von Humboldt Foundation (fellowship to E. M.-L.) and the Aragón I+D Foundation and the Spanish Ministry of Science and Innovation (Programa Nacional de Movilidad de Recursos Humanos del Plan Nacional de I-D+I 2008-2011) and CSIC (PIE 200880I260) (R. P. H.).Peer Reviewe

    Towards a comprehensive understanding of the structural dynamics of a bacterial diterpene synthase during catalysis

    Get PDF
    Terpenes constitute the largest and structurally most diverse natural product family. Most terpenoids exhibit a stereochemically complex macrocyclic core, which is generated by C–C bond forming of aliphatic oligo-prenyl precursors. This reaction is catalysed by terpene synthases (TPSs), which are capable of chaperoning highly reactive carbocation intermediates through an enzyme-specific reaction. Due to the instability of carbocation intermediates, the proteins’ structural dynamics and enzyme:substrate interactions during TPS catalysis remain elusive. Here, we present the structure of the diterpene synthase CotB2, in complex with an in crystallo cyclised abrupt reaction product and a substrate-derived diphosphate. We captured additional snapshots of the reaction to gain an overview of CotB2’s catalytic mechanism. To enhance insights into catalysis, structural information is augmented with multiscale molecular dynamic simulations. Our data represent fundamental TPS structure dynamics during catalysis, which ultimately enable rational engineering towards tailored terpene macrocycles that are inaccessible by conventional chemical synthesis

    Synthetic biology identifies the minimal gene set required for paclitaxel biosynthesis in a plant chassis

    Get PDF
    The diterpenoid paclitaxel (Taxol) is a chemotherapy medication widely used as a first-line treatment against several types of solid cancers. The supply of paclitaxel from natural sources is limited. However, missing knowledge about the genes involved in several specific metabolic steps of paclitaxel biosynthesis has rendered it difficult to engineer the full pathway. In this study, we used a combination of transcriptomics, cell biology, metabolomics, and pathway reconstitution to identify the complete gene set required for the heterologous production of paclitaxel. We identified the missing steps from the current model of paclitaxel biosynthesis and confirmed the activity of most of the missing enzymes via heterologous expression in Nicotiana benthamiana. Notably, we identified a new C4β-C20 epoxidase that could overcome the first bottleneck of metabolic engineering. We used both previously characterized and newly identified oxomutases/epoxidases, taxane 1β-hydroxylase, taxane 9α-hydroxylase, taxane 9α-dioxygenase, and phenylalanine-CoA ligase, to successfully biosynthesize the key intermediate baccatin III and to convert baccatin III into paclitaxel in N. benthamiana. In combination, these approaches establish a metabolic route to taxoid biosynthesis and provide insights into the unique chemistry that plants use to generate complex bioactive metabolites

    Progress towards a public chemogenomic set for protein kinases and a call for contributions

    Get PDF
    Protein kinases are highly tractable targets for drug discovery. However, the biological function and therapeutic potential of the majority of the 500+ human protein kinases remains unknown. We have developed physical and virtual collections of small molecule inhibitors, which we call chemogenomic sets, that are designed to inhibit the catalytic function of almost half the human protein kinases. In this manuscript we share our progress towards generation of a comprehensive kinase chemogenomic set (KCGS), release kinome profiling data of a large inhibitor set (Published Kinase Inhibitor Set 2 (PKIS2)), and outline a process through which the community can openly collaborate to create a KCGS that probes the full complement of human protein kinases
    corecore