50 research outputs found

    Curcumin Ingestion Inhibits Mastocytosis and Suppresses Intestinal Anaphylaxis in a Murine Model of Food Allergy

    Get PDF
    IgE antibodies and mast cells play critical roles in the establishment of allergic responses to food antigens. Curcumin, the active ingredient of the curry spice turmeric, has anti-inflammatory properties, and thus may have the capacity to regulate Th2 cells and mucosal mast cell function during allergic responses. We assessed whether curcumin ingestion during oral allergen exposure can modulate the development of food allergy using a murine model of ovalbumin (OVA)-induced intestinal anaphylaxis. Herein, we demonstrate that frequent ingestion of curcumin during oral OVA exposure inhibits the development of mastocytosis and intestinal anaphylaxis in OVA-challenged allergic mice. Intragastric (i.g.) exposure to OVA in sensitized BALB/c mice induced a robust IgE-mediated response accompanied by enhanced OVA-IgE levels, intestinal mastocytosis, elevated serum mMCP-1, and acute diarrhea. In contrast, mice exposed to oral curcumin throughout the experimental regimen appeared to be normal and did not exhibit intense allergic diarrhea or a significant enhancement of OVA-IgE and intestinal mast cell expansion and activation. Furthermore, allergic diarrhea, mast cell activation and expansion, and Th2 responses were also suppressed in mice exposed to curcumin during the OVA-challenge phase alone, despite the presence of elevated levels of OVA-IgE, suggesting that curcumin may have a direct suppressive effect on intestinal mast cell activation and reverse food allergy symptoms in allergen-sensitized individuals. This was confirmed by observations that curcumin attenuated the expansion of both adoptively transferred bone marrow-derived mast cells (BMMCs), and inhibited their survival and activation during cell culture. Finally, the suppression of intestinal anaphylaxis by curcumin was directly linked with the inhibition of NF-kappaB activation in curcumin-treated allergic mice, and curcumin inhibited the phosphorylation of the p65 subunit of NF-kappaB in BMMCs. In summary, our data demonstrates a protective role for curcumin during allergic responses to food antigens, suggesting that frequent ingestion of this spice may modulate the outcome of disease in susceptible individuals

    Epigenetic Regulation via Altered Histone Acetylation Results in Suppression of Mast Cell Function and Mast Cell-Mediated Food Allergic Responses

    Get PDF
    Mast cells are highly versatile cells that perform a variety of functions depending on the immune trigger, context of activation, and cytokine stimulus. Antigen-mediated mast cell responses are regulated by transcriptional processes that result in the induction of numerous genes contributing to mast cell function. Recently, we also showed that exposure to dietary agents with known epigenetic actions such as curcumin can suppress mast cell-mediated food allergy, suggesting that mast cell responses in vivo may be epigenetically regulated. To further assess the effects of epigenetic modifications on mast cell function, we examined the behavior of bone marrow-derived mast cells (BMMCs) in response to trichostatin A (TSA) treatment, a well-studied histone deacetylase inhibitor. IgE-mediated BMMC activation resulted in enhanced expression and secretion of IL-4, IL-6, TNF-α, and IL-13. In contrast, pretreatment with TSA resulted in altered cytokine secretion. This was accompanied by decreased expression of FcεRI and mast cell degranulation. Interestingly, exposure to non-IgE stimuli such as IL-33, was also affected by TSA treatment. Furthermore, continuous TSA exposure contributed to mast cell apoptosis and a decrease in survival. Further examination revealed an increase in I-κBα and a decrease in phospho-relA levels in TSA-treated BMMCs, suggesting that TSA alters transcriptional processes, resulting in enhancement of I-κBα transcription and decreased NF-κB activation. Lastly, treatment of wild-type mice with TSA in a model of ovalbumin-induced food allergy resulted in a significant attenuation in the development of food allergy symptoms including decreases in allergic diarrhea and mast cell activation. These data therefore suggest that the epigenetic regulation of mast cell activation during immune responses may occur via altered histone acetylation, and that exposure to dietary substances may induce epigenetic modifications that modulate mast cell function

    [68Ga]Ga-P16-093 as a PSMA-Targeted PET Radiopharmaceutical for Detection of Cancer: Initial Evaluation and Comparison with [68Ga]Ga-PSMA-11 in Prostate Cancer Patients Presenting with Biochemical Recurrence

    Get PDF
    Purpose: This study was undertaken to evaluate radiation dosimetry for the prostate-specific membrane antigen targeted [68Ga]Ga-P16-093 radiopharmaceutical, and to initially assess agent performance in positron emission tomography (PET) detection of the site of disease in prostate cancer patients presenting with biochemical recurrence. Procedures: Under IND 133,222 and an IRB-approved research protocol, we evaluated the biodistribution and pharmacokinetics of [68Ga]Ga-P16-093 with serial PET imaging following intravenous administration to ten prostate cancer patients with biochemical recurrence. The recruited subjects were all patients in whom a recent [68Ga]Ga-PSMA-11 PET/X-ray computed tomography (CT) exam had been independently performed under IND 131,806 to assist in decision-making with regard to their clinical care. Voided urine was collected from each subject at ~ 60 min and ~ 140 min post-[68Ga]Ga-P16-093 injection and assayed for Ga-68 content. Following image segmentation to extract tissue time-activity curves and corresponding cumulated activity values, radiation dosimetry estimates were calculated using IDAC Dose 2.1. The prior [68Ga]Ga-PSMA-11 PET/CT exam (whole-body PET imaging at 60 min post-injection, performed with contrast-enhanced diagnostic CT) served as a reference scan for comparison to the [68Ga]Ga-P16-093 findings. Results: [68Ga]Ga-P16-093 PET images at 60 min post-injection provided diagnostic information that appeared equivalent to the subject's prior [68Ga]Ga-PSMA-11 scan. With both radiopharmaceuticals, sites of tumor recurrence were found in eight of the ten patients, identifying 16 lesions. The site of recurrence was not detected with either agent for the other two subjects. Bladder activity was consistently lower with [68Ga]Ga-P16-093 than [68Ga]Ga-PSMA-11. The kidneys, spleen, salivary glands, and liver receive the highest radiation exposure from [68Ga]Ga-P16-093, with estimated doses of 1.7 × 10-1, 6.7 × 10-2, 6.5 × 10-2, and 5.6 × 10-2 mGy/MBq, respectively. The corresponding effective dose from [68Ga]Ga-P16-093 is 2.3 × 10-2 mSv/MBq. Conclusions: [68Ga]Ga-P16-093 provided diagnostic information that appeared equivalent to [68Ga]Ga-PSMA-11 in this limited series of ten prostate cancer patients presenting with biochemical recurrence, with the kidneys found to be the critical organ. Diminished tracer appearance in the urine represents a potential advantage of [68Ga]Ga-P16-093 over [68Ga]Ga-PSMA-11 for detection of lesions in the pelvis

    Measurement of fine-spatial-resolution 3D vegetation structure with airborne waveform lidar: Calibration and validation with voxelised terrestrial lidar

    Get PDF
    ArticleThis is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Vegetation structure controls habitat availability, ecosystem services, weather, climate and microclimate, but current landscape scale vegetation maps have lacked details of understorey vegetation and within-canopy structure at resolutions finer than a few tens of metres. In this paper, a novel signal processing method is used to correctly measure 3D voxelised vegetation cover from full-waveform ALS data at 1.5m horizontal and 50 cm vertical resolution, including understorey vegetation and within-canopy structure. A new method for calibrating and validating the instrument specific ALS processing using high resolution TLS data is also presented and used to calibrate and validate the ALS derived data products over a wide range of land cover types within a heterogeneous urban area, including woodland, gardens and streets. This showed the method to accurately retrieve voxelised canopy cover maps with less than 0.4% of voxels containing false negatives, 10% of voxels containing false positives and a canopy cover accuracy within voxels of 24%. The method was applied across 100 km2 and the resulting structure maps were compared to the more widely used discrete return ALS and Gaussian decomposed waveform ALS data products. These products were found to give little information on the within-canopy structure and so are only capable of deriving coarse resolution, plot-scale structure metrics. The detailed 3D canopy maps derived from the new method allow landscape scale ecosystem processes to be examined in more detail than has previously been possible, and the new method reveals details about the canopy understorey, creating opportunities for ecological investigations. The ca ibration method can be applied to any waveform ALS instrument and processing method. All code used in this paper is freely available online through bitbucket (https://bitbucket.org/StevenHancock/voxel lidar)This work was funded under the NERC Biodiversity and Ecosystem Services Sustainability (BESS) thematic programme for the Fragments Functions and Flows in Urban Ecosystems project (F3UES; http://bess-urban.group.shef.ac.uk/), grant number NE/J015067/1. The airborne lidar data were acquired by NERC Airborne Research and Survey Facility (ARSF)

    Minithoracotomy vs Conventional Sternotomy for Mitral Valve Repair: A Randomized Clinical Trial

    Get PDF
    Importance: The safety and effectiveness of mitral valve repair via thoracoscopically-guided minithoracotomy (minithoracotomy) compared with median sternotomy (sternotomy) in patients with degenerative mitral valve regurgitation is uncertain. Objective: To compare the safety and effectiveness of minithoracotomy vs sternotomy mitral valve repair in a randomized trial. Design, Setting, and Participants: A pragmatic, multicenter, superiority, randomized clinical trial in 10 tertiary care institutions in the UK. Participants were adults with degenerative mitral regurgitation undergoing mitral valve repair surgery. Interventions: Participants were randomized 1:1 with concealed allocation to receive either minithoracotomy or sternotomy mitral valve repair performed by an expert surgeon. Main Outcomes and Measures: The primary outcome was physical functioning and associated return to usual activities measured by change from baseline in the 36-Item Short Form Health Survey (SF-36) version 2 physical functioning scale 12 weeks after the index surgery, assessed by an independent researcher masked to the intervention. Secondary outcomes included recurrent mitral regurgitation grade, physical activity, and quality of life. The prespecified safety outcomes included death, repeat mitral valve surgery, or heart failure hospitalization up to 1 year. Results: Between November 2016 and January 2021, 330 participants were randomized (mean age, 67 years, 100 female [30%]); 166 were allocated to minithoracotomy and 164 allocated to sternotomy, of whom 309 underwent surgery and 294 reported the primary outcome. At 12 weeks, the mean between-group difference in the change in the SF-36 physical function T score was 0.68 (95% CI, −1.89 to 3.26). Valve repair rates (≈ 96%) were similar in both groups. Echocardiography demonstrated mitral regurgitation severity as none or mild for 92% of participants at 1 year with no difference between groups. The composite safety outcome occurred in 5.4% (9 of 166) of patients undergoing minithoracotomy and 6.1% (10 of 163) undergoing sternotomy at 1 year. Conclusions and relevance: Minithoracotomy is not superior to sternotomy in recovery of physical function at 12 weeks. Minithoracotomy achieves high rates and quality of valve repair and has similar safety outcomes at 1 year to sternotomy. The results provide evidence to inform shared decision-making and treatment guidelines. Trial Registration: isrctn.org Identifier: ISRCTN1393045

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Pro-inflammatory role of natural killer cells in the development of allergic airway disease

    No full text
    Natural Killer (NK) cells have the potential to modulate adaptive immune responses. We investigated the role of NK cells in an ovalbumin (OVA) based model of AAD using NK-deficient (NKD) mice and immunodepletion experiments. Induction of AAD in NKD mice and in mice depleted of NK cells expressing Ly49 A, D, G receptors resulted in attenuation of airway eosinophilia, Th2 cytokine production and lung histopathology. Adoptive transfer experiments further confirmed the role of NK cells and showed that they were especially important during the priming phase of the AAD model. We found both NK and NKT cells in the lung tissue and BAL of wild type mice during AAD. The lung NKT cells were activated immediately after sensitization, suggesting that they may also contribute to AAD. However, attenuation of AAD in NKD mice which are deficient in NK cells but have normal NKT cell numbers suggested that they were not essential for AAD in our model. This was further corroborated by development of AAD in β2m and CD Id knock-out (KO) mice which are also deficient in NKT cells. We examined perforin KO mice to determine the role of NK cells. Development of disease in these mice indicated that NK cell perforin-mediated cytotoxicity was not essential in AAD regulation. The effects of NK cells on other cells were determined by examining dendritic cells (DCs) in wild type and NKD mice during AAD. Decreased numbers of DCs in the lungs of NKD mice during AAD suggested that NK-DC interactions may play a role in AAD regulation. The effect of cytokines important in AAD development was determined using IL-15 and IL-15Rα KO mice which are deficient in NK, NKT, γδ T and memory CD8 T cells. Both IL-15 and IL-15Rα KO mice were susceptible to AAD. Interestingly, IL-15 KO mice also developed enhanced expression of the disease. Based on the above results, we conclude that NK cells play a pro-inflammatory role in the development of AAD. While they are important for the allergic phenotype, they are not absolutely essential as suggested by the demonstration of AAD in mice deficient in IL-15 interactions.

    The polyphenol ellagic acid exerts anti-inflammatory actions via disruption of store-operated calcium entry (SOCE) pathway activators and coupling mediators

    No full text
    Ellagic acid, a naturally occurring phenol found in a variety of fruits and nuts has been shown to possess anti-inflammatory properties. However, the mechanism of action behind its anti-inflammatory action is unclear. Using human Jurkat T cells, our study examined the effects of ellagic acid (EA) on C
    corecore