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A B S T R A C T

Vegetation structure controls habitat availability, ecosystem services, weather, climate and microclimate,
but current landscape scale vegetation maps have lacked details of understorey vegetation and within-
canopy structure at resolutions finer than a few tens of metres. In this paper, a novel signal processing
method is used to correctly measure 3D voxelised vegetation cover from full-waveform ALS data at 1.5 m
horizontal and 50 cm vertical resolution, including understorey vegetation and within-canopy structure.
A new method for calibrating and validating the instrument specific ALS processing using high resolution
TLS data is also presented and used to calibrate and validate the ALS derived data products over a wide
range of land cover types within a heterogeneous urban area, including woodland, gardens and streets.
This showed the method to accurately retrieve voxelised canopy cover maps with less than 0.4% of voxels
containing false negatives, 10% of voxels containing false positives and a canopy cover accuracy within vox-
els of 24%. The method was applied across 100 km2 and the resulting structure maps were compared to
the more widely used discrete return ALS and Gaussian decomposed waveform ALS data products. These
products were found to give little information on the within-canopy structure and so are only capable of
deriving coarse resolution, plot-scale structure metrics. The detailed 3D canopy maps derived from the
new method allow landscape scale ecosystem processes to be examined in more detail than has previously
been possible, and the new method reveals details about the canopy understorey, creating opportunities
for ecological investigations. The calibration method can be applied to any waveform ALS instrument and
processing method. All code used in this paper is freely available online through bitbucket (https://bitbucket.
org/StevenHancock/voxel_lidar).

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The 3D structure of vegetation canopies is a key determinant of
ecological function and processes, providing an indicator of habitat
(Ashcroft et al., 2014), biomass (Calders et al., 2015), impacting on
weather and climate (Ni-Meister and Gao, 2011) and modulating
microclimate (Clinton, 2003). For example, in urban systems the
pattern and distribution of greenspace mitigates the “heat island”
effect (Myint et al., 2015), with implications for human health.
The distribution and quality of greenspace affect mental well-
being, directly and by providing corridors for wildlife (Vaz et al.,
2015; Shanahan et al., 2017). Understanding and quantifying how

* Corresponding author.
E-mail address: svenhancock@gmail.com (S. Hancock).

vegetation drives these processes requires accurate maps of struc-
ture, the vertical and horizontal distribution of vegetation cover
above ground, over landscape scales (several kilometres) at sufficient
resolution to resolve features of interest, which can be as small as
1–2 m horizontally and vertically for urban wildlife corridors and
under-canopy paths (Zeller et al., 2012).

Measuring three-dimensional vegetation structure over large
areas is challenging. Manually characterising structure is time con-
suming and impractical over more than a few metres (Bréda, 2003;
Thomas and Winner, 2000). Terrestrial laser scanning (TLS) has been
used to produce high resolution (10 cm) 3D vegetation maps (Hosoi
and Omasa, 2006; Béland et al., 2011; Raumonen et al., 2013, Seidel
et al., 2012) over plots a few tens of metres across and the results
from TLS have been shown to be more consistent and accurate than
those from manual methods (Ashcroft et al., 2014; Hancock et al.,
2014; Calders et al., 2015). TLS does not provide a realistic option for

http://dx.doi.org/10.1016/j.rse.2016.10.041
0034-4257/© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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characterising 3D vegetation structure over large areas but can be
used to calibrate and validate larger scale measurements (Hopkinson
et al., 2013).

Airborne laser scanning (ALS) measures the location and radio-
metric properties of reflected laser light over landscape scales,
allowing the characterisation of 3D structure. They operate in two
different modes, “discrete return” and “waveform”. Discrete return
uses proprietary algorithms to produce a point cloud (Disney et al.,
2010). This allows measurement of canopy height (Li et al., 2015) and
has been used to estimate canopy density from the ratio of points
returned from the canopy and ground (Stark et al., 2012). However,
these algorithms have been developed for measuring hard targets
and can be biased over vegetation (Disney et al., 2010), requiring
ground based calibration to correct (Li et al., 2015). In addition the
return strength may not be related to target reflectance (Hancock
et al., 2015), complicating its use in canopy characterisation. These
discrete return instruments methods only return a few (around 4)

points per laser shot with no way of knowing what is not being
measured (Gaveau and Hill, 2003; Disney et al., 2010), potentially
preventing the measurement of within-canopy and understorey
structure.

Full-waveform lidar measures the reflected laser intensity as a
function of range (Baltsavias, 1999). This gives information on all
objects visible to the ALS but requires processing to extract target
properties from the signal (Anderson et al., 2015). Fig. 1 illustrates
how an ALS waveform is made up of the vertical distribution of
objects that are to be measured, referred to as the “target profile”,
(Fig. 1 (a)), attenuation as laser light is blocked by targets (black line
in Fig. 1 (b)), blurring by the lidar system pulse (black line in Fig. 1
(c)) and noise to give the measured signal (red line in Fig. 1 (d)).
The effects of noise, system pulse and attenuation must be removed
in order to measure high resolution (<2 m) vegetation structure.
The extra information available to waveform lidar has been used
to measure leaf area index (Hopkinson et al., 2013), gap fraction

(a) Lidar beam and true target profile
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(b) Visible target profile
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(c) Visible target profile with system pulse
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(d) Measured wave form

Fig. 1. Illustration of ALS waveform composition. The true target profile is shown (red line) in each graph to allow comparison to the different components of the measured wave
(black line).
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(Musselman et al., 2013), biomass (Drake et al., 2002), land cover
(Mallet et al., 2011) and plot scale vertical foliage profiles (Harding
et al., 2001). Past waveform studies have either not corrected for
the system pulse, limiting vertical resolution to around 2 m (Harding
et al., 2001; Fieber et al., 2015), which is too coarse a resolution to
detect short understorey, or have aggregated to tens of metres hor-
izontal resolution (Hopkinson et al., 2013), which is too coarse to
detect shrubs and under-canopy paths, both of which are ecologically
important.

Some previous studies have used discrete return ALS to investi-
gate within-canopy and understorey structure. They have attempted
to overcome the sampling issues by either processing at coarse reso-
lution (>20 m) (Martinuzzi et al., 2009; Hilker et al., 2010; Miura and
Jones, 2010; Korpela et al., 2012), using data collected during leaf-
off periods (Hill and Broughton, 2009) or used statistical approaches
in sparse canopies (Wing et al., 2012). Plot scale metrics do not
capture the fine scale detail needed to understand the effects of
structure, particularly in heterogeneous areas such as towns. Leaf-
off measurements are not possible in many situations (e.g. evergreen
vegetation) and their use assumes that the understorey structure
is constant as the overstorey changes, which is not the case for
deciduous understorey. The study of Wing et al. (2012) estimated
understorey density at 2 m resolution, but in a sparse canopy (from
Fig. 9 in Wing et al. (2012) the maximum canopy cover was 80% with
a mean around 25%), so it is not known whether their approach will
work in a closed canopy. Their work also used a statistical approach,
deriving metrics such as number of lidar returns from different
height bands and canopy top roughness, then empirically relating
those to ground measurements of understorey density. A similar sta-
tistical approach was used by Miura and Jones (2010) and Latifi et al.
(2015). This assumes that understorey density and overstorey struc-
ture are correlated and requires local calibration. It is questionable
if this approach can be implemented over large or heterogeneous
areas, where management and disturbance regimes may vary.

Full-waveform lidar is a direct measure of light reflected from
throughout the canopy and so, after correcting for instrument noise
and attenuation, offers the potential to directly measure the com-
plete vertical structure at the resolution of the ALS footprint density
(typically 1 m or better). This paper aims to fully characterise vegeta-
tion structure over large, heterogeneous areas using physically based
waveform ALS inversion. Detailed, plot scale TLS measurements were
used to calibrate the ALS instrument specific parameters and validate
the ALS processing. The sensitivity of the results to the calibrated
parameters was tested. The ALS processing method was then applied
to a dataset covering 100 km2.

Table 1
Plot descriptions along with number of TLS scans.

Plot Description Scans

1 Woodland with dense understorey 3
2 Woodland with medium understorey 3
3 Well manicured garden 2
4 Road and front garden with shrubs 2
5 Roadside with isolated trees 2
6 Grass field transitioning to dense bushes 2
7 Car park, front lawn and isolated tree 2
8 Lawn divided by hedge with large oak

tree, ringed by scrubby bushes
2

2. Materials and methods

2.1. Field site and lidar data

Luton in the UK, a predominantly Victorian terraced town with
areas of woodland, scrubland and parkland, was surveyed by the
NERC-ARSF Dornier 228 aircraft in September 2012. This carried a
Leica ALS50-II ALS with the waveform WDM65 add-on, recording
data as separate discrete return and waveform streams. The dis-
crete returns used Leica’s proprietary algorithm to record up to four
returns per laser shot with a reported accuracy of 20 cm (Kukko and
Hyyppä, 2007). The waveform stream recorded the returned laser
intensity every 1 nm (15 cm) for an extent of 38.4 m after the first
return (with a buffer to capture the leading edge) per laser shot.
The system pulse (the combination of laser pulse shape and detec-
tor response) was measured from returns from Luton airport runway
(low reflectance) and a grass football field (high reflectance) and was
found to have a width (one standard deviation, s) of 53 cm (shown
in Fig. 3(b) of Hancock et al. (2015)), causing a blurring of 2 m. The
laser wavelength was 1064 nm. The aircraft flew at an altitude of
2.6 km and airspeed of 140 knots, giving a footprint of around
33 cm in diameter with a density of between 0.25 and 4 footprints
per m2 depending on ground elevation, scan angle and flightline
overlap.

Aerial photos and lidar waveform shapes were examined in a
1 km2 area around a site of intensive ecological surveys (Cox and
Gaston, 2016). Eight ground plots were selected to cover the range of
observed land covers across the urban extent (which included wood-
land, isolated trees, flower garden, scrubland, road, building, grass
field and hedges) and ALS waveform shapes (in terms of maximum
return extent and number of separate returns per beam). These plots
are shown in Fig. 2 and described in Table 1.

Fig. 2. Aerial photograph of field sites in Luton, UK, where TLS data was collected.
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Ground data were collected in August 2014 with a Riegl VZ400
TLS. An angular resolution of 0.35 mrad was used with up to four
discrete returns per laser shot recorded. The laser had a wavelength
of 1545 nm (different to the ALS). The reported range accuracy was
5 mm. Between two and three separate hemispherical scan locations
were collected per plot in order to avoid errors from attenuation,
with two for sparse vegetation and three for denser vegetation. Scan
locations were manually selected to give a clear view to each side of
every tree crown within a plot (Hancock et al., 2014). The TLS was
geolocated by manually aligning roofs of buildings to the discrete
return ALS. This gave an accuracy of 10 cm vertically and 30 cm
horizontally.

2.2. Lidar processing

The ALS processing is described in Section 2.3, the TLS processing
in Section 2.4 and Section 2.4.2 describes how the TLS data was
used to calibrate and validate the ALS processing. A flowchart of the
ALS and TLS processing methods and how they were calibrated and
validated is shown in Fig. 5.

2.3. ALS processing

To characterise vegetation at high spatial resolution (<2 m) from
waveform ALS, the target profile (red line in Fig. 1 (d)) must be
extracted from the measured lidar waveform (black line in Fig. 1 (d)).
Noise must be removed (extract 1(c) from Fig. 1 (d)), the system pulse
blurring removed (Fig. 1 (c) to (b)), then attenuation must be cor-
rected (Fig. 1 (b) to (a)) to retrieve the true foliage profile (defined as
the canopy cover within each vertical bin).

The most common waveform processing method is to denoise the
signal by subtracting a noise threshold, then decompose the signal
by fitting Gaussians (Hofton et al., 2000; Wagner et al., 2006), also
referred to as Gaussian decomposition. This gives a discrete point
cloud where each point has an associated width and amplitude,
giving details on canopy structure (Mallet et al., 2011), however
it assumes that the target profile can be represented as a sum of
Gaussians. Previous work carried out by the authors suggests that
this assumption is valid for large footprint lidar (30 m diameter), for
which Gaussian decomposition was developed, but may not hold for
small footprint (33 cm) ALS due to increased heterogeneity (Hancock
et al., 2015). Alternative methods have been proposed to retrieve
the target profile by deconvolving waveforms. Jutzi and Stilla (2006)
applied the Wiener filter, Parrish and Nowak (2009) proposed using
EM deconvolution, Roncat et al. (2011) fitted uniform B-splines,
Azadbakht et al. (2016) applied Tikhonov regularisation, Hancock et
al. (2008) and Zhu et al. (2010) applied Gold’s method and Wu et al.
(2011) used Richardson-Lucy deconvolution.

This paper tests the ability of Gold’s method (referred to as “Gold”
from this point onwards) to characterise vegetation canopies and
benchmarked against the more common Gaussian decomposition
method and discrete return ALS data. Richardson-Lucy deconvolu-
tion was also tested, but the results for Gold were found to be slightly
more accurate (1% difference) and a factor of ten less computation-
ally expensive than Richardson-Lucy deconvolution due to faster
convergence, so only the results from Gold are given in this paper. A
comparison with the other deconvolution methods was beyond the
scope of this paper. Sections 2.3.1 to 2.3.4 describe the denoising,
system pulse removal and attenuation correction steps needed for a
direct, physically based measurement of understorey and overstorey
density.

2.3.1. Denoising
Noise can create false returns and distort true ALS returns.

Fig. 5 (b) in Hancock et al. (2015) shows that the Leica ALS50-II
has stable background noise, therefore it can easily be removed by

Table 2
ALS and TLS processing parameters.

Parameter Description

ALS denoising
thresh Fixed background noise threshold
threshScale Variable background noise threshold scalar
minWidth Minimum feature width
smooWidth Smoothing width
ALS deconvolution
deconTol Deconvolution convergence tolerance
TLS voxelisation
qapp Apparent reflectance
minGap Minimum gap fraction to use

ignoring all signal beneath a threshold (Hofton et al., 2000). There
are multiple combinations of denoising methods, each of which
has potential advantages and disadvantages. As these have not yet
been assessed in as much detail as the combination of ALS and TLS
data allows, six combinations were assessed in order to achieve the
highest accuracy possible.

The threshold can either be fixed or set by the statistics of the
signal (Hofton et al., 2000), referred to as “fixed” and “variable”
thresholds. The variable noise threshold was set as the modal value
of each waveform plus a multiple of the mode of the deviation about
the mode, “threshScale” in Table 2. The mode was used, rather than
the mean of a section of blank waveform, due to the short extent
of the waveforms (38.4 m). To avoid occasional spikes in back-
ground noise, only features above a minimum width were accepted,
minWidth. If this width was set to one, all signal above the noise
threshold would be accepted.

Distortions in the signal could be removed by convolution with
a Gaussian, either before or after the removal of background noise,
referred to as “pre-smoothing” and “post-smoothing”. Smoothing
could be removed by setting the width, “smooWidth” in Table 2, to
0. Thus there were four denoising parameters (Table 2).

Using a hard noise threshold will truncate the leading and trailing
edge of the signal, potentially preventing the accurate deconvolution
of weak signals (such as ground returns beneath dense canopies).
This can be avoided by tracking from the point at which the signal
crosses the threshold to the mean noise level (Hancock et al., 2011).
Therefore the threshold can either be “noise tracked” or “hard”.
When using noise tracking with fixed noise thresholds, the modal
noise level for the Leica ALS50-II was found to be DN = 13, as
reported in Hancock et al. (2015). These three denoising options were
combined to give six ALS processing methods, listed in Table 3.

2.3.2. System pulse
Two methods for removing the blurring effect of the system pulse

were tested, Gaussian decomposition and Gold’s method. Gaussian
decomposition assumes that the denoised waveform (Avis) is made
up of a sum of n Gaussians (Hofton et al., 2000), given by:

Avis =
n∑

i=0

Aie
− (r−li)

2

2s2
i (1)

Table 3
ALS processing methods tested with labels.

Label Deconvolution Noise threshold Noise tracking Smoothing

GFnt Gold Fixed Yes Post
GVnt Gold Variable Yes Post
GFh Gold Fixed No Post
GVh Gold Variable No Post
GFps Gold Fixed Yes Pre
GVps Gold Variable Yes Pre
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(a) Voxel gap fraction (b) TLS point radius

Fig. 3. Illustration of variables used to calculate TLS point radius.

where; r is range from the lidar

l i the range of the centre of the ith Gaussian
and s i is the width of the ith Gaussian.

The MINPACK implementation of the Levenberg-Marquardt opti-
misation method (Garbow et al., 1980) was used to decompose
denoised waveforms into Gaussians. Inflection points of a smoothed
waveform were used to decide upon the number of Gaussians and
estimates of the initial parameters (Hofton et al., 2000). This does
not extract the target profile from the measured waveform, instead
extracting target properties as a sum of Gaussians.

Gold’s method attempts to deconvolve the system pulse from
the measured waveform to retrieve the target profile but decon-
volution operators are notoriously sensitive to noise. To overcome

this Gold (1964) proposed iteratively reblurring and deconvolving
the signal. This reduces the effect of noise whilst ensuring that no
deconvolved signal appears outside the bounds of the original, raw
waveform. Gold’s method is given by (Jansson, 1997):

o(k+1) = o(k) i
s ⊗ o(k)

(2)

where; i is the raw, measured waveform

s is the ALS system pulse
o(k) is the kth estimate of the visible target profile
o(0) = i, the initial estimate
and ⊗ is the convolution operator

Fig. 4. Illustration of generating waveforms from TLS. Black points are returns in a given waveform bin. Grey points are areas that have been attenuated by earlier interactions.
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Fig. 5. Flowchart of ALS and TLS processing. Calibration and validation steps are labelled in red.

Deconvolution is mathematically ill-posed; there are multiple
possible solutions. Wu et al. (2011) proposed iterating until the root
mean square difference between subsequent estimates falls below a
tolerance (deconTol in Table 2).

2.3.3. Hard targets
Testing revealed that deconvolution was unable to retrieve the

Dirac-delta functions of returns from single, hard objects, such as

bare earth. Instead, the retrieved profiles were spread over several
bins, which would be interpreted as short vegetation where none
exists. To remove this error, waveforms with returns from hard
targets were not deconvolved and instead replaced by a single point
located at the centre of gravity (Jutzi and Stilla, 2005). Waveforms
were identified as coming from a hard target if there was a single
feature above noise and either correlated strongly with the system
pulse shape (within 4.6% RMSE) or was narrower than the system
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pulse width. For a 33 cm diameter footprint (s=8.25 cm), slopes will
not significantly broaden the ground return. Even a 60o slope would
only increase the ground return width from the system pulse of
53 cm to 55 cm. Large footprint systems (30 m diameter) may need
an alternative approach to detect hard targets in the presence of
slope.

Some waveforms contain diffuse targets and finish with a hard
target (such as the ground) and so are not identified as hard targets
by the above method. It was observed that some processed wave-
forms contained subterranean signal, which would have been due
to a combination of multiple scattered light and electronic noise
after true returns. Whilst it may be possible to filter this out using
knowledge of the expected increase in the mean noise level after
true hits, this was beyond the scope of this paper. Instead the false
returns were removed by ignoring all returns beneath a likely ground
surface. This was defined by fitting a polynomial plane (5th order
polynomial in x and y fitted over 50 m by 50 m patches) through the
discrete return lidar points that were identified as ground by lastools
(Isenburg, 2011). This solved for the case of diffuse targets over
ground (a common occurrence), but it may be the case that some
hard targets with overhanging diffuse objects were not at ground
level, such as roofs or cars, and in these cases there could be false pos-
itives between the hard target and ground elevations. There were no
examples of this within the field sites to allow this to be investigated.

2.3.4. Attenuation correction
Correct denoising and deconvolution will give the target profile

visible to the lidar instrument, Avis(r). The true target profile is related
to this by attenuation, described by:

Avis(r) = gap(r)Ap(r) (3)

where; Ap(r) is the target area within a lidar beam projected in that

direction at range r
and gap(r) is the gap fraction up to range r.

This assumes that the visible target area at a given range is rep-
resentative of the obscured target. The true area can be found by
dividing the deconvolved signal by gap fraction; equal to one minus
the cumulative visible area up to that point:

gap(r) = 1 −
r∑
0

Avis(r)
Ap(r)

(4)

This is a more direct, physically based method than the statis-
tical approach used in previous studies (Wing et al., 2012). As it is
known that the total cumulative gap fraction is equal to one when
looking down from above (the ground will block all light), only
the relative effective reflectance of target elements (e.g. ground and
canopy) is needed. It can either be assumed that this is homogeneous
throughout the canopy, in which case the Avis(r) waveform’s inte-
gral can be normalised to unity and the area directly calculated, or
an attempt to calculate the canopy and ground reflectance using the
method of Armston et al. (2013) can be made. Whilst this method has
been shown to perform well over forests, it has not been tested over
the more heterogeneous urban areas. Therefore this paper assumes
homogeneous effective reflectance.

2.4. TLS processing

To calculate canopy cover and generate waveforms from the TLS
data, the point cloud was converted into a set of spheres with the
radius representing the projected area of the target. Rays were traced
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through the spheres to calculate the gap fraction in a given direc-
tion, following the method presented in Hancock et al. (2014). Sphere
radii were set from the lidar beam radius, accounting for partial hits
and attenuation. This is slightly different to the voxel gap fraction
methods used by Hosoi and Omasa (2006) and Béland et al. (2011)
as the explicit geometric information is retained and will account for
clumping and angular distribution effects.

The setting of TLS point radii, rp, is illustrated in Fig. 3 and
described by Eq. (5) (note that the equation in Hancock et al. (2014)
left out the square root in error).

rp = rb

√
1

qapp
Ir

1
Pgap

(5)

where; rb is the beam radius at that point

qapp is the target’s apparent reflectance (described in Eq. (6))
Ir is the TLS return intensity, corrected for range and scaled to lie
between 0 and 1
and Pgap is the gap fraction up to that point.

The apparent target reflectance, qapp, is the product of the target’s
reflectance, qt, and the phase function at that view angle, X(h), as
darker targets or targets at high angles of incidence will give weaker
returns whilst still filling the field of view. Current TLS data is not
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of sufficient resolution to determine the angle of incidence through-
out the canopy and so h cannot be calculated, so no attempt was
made to separate the elements of qapp and it was used as an effective
parameter. The qapp and Ir terms account for partial hits, following
Hancock et al. (2014), as shown in Fig. 3 (b).

qapp = qtX(h) (6)

To correct for attenuation of the TLS beams through the canopy,
the radius was divided by the gap fraction up to the voxel containing
that point, Pgap. Fig. 3 (a) illustrates the attenuation correction (Pgap);
for the voxel outlined in green, the lidar beams in blue reach the
voxel (either pass through or hit targets within) whilst those in red
would have passed through but were blocked by earlier elements.
The gap fraction to that voxel, Pgap, is then the ratio of the number
of beams that reach the voxel (blue) to the number that could have
passed through (blue plus red). In order to avoid errors by dividing
by small numbers, a minimum gap fraction that could be trusted,
minGap, was specified and Pgap was not allowed to be smaller than
minGap.

To reduce computational expense, TLS points were read into
memory and mapped into voxel space. Only TLS points within voxels
of interest were searched through in subsequent analysis, using an
efficient voxel intersection test (Amanatides et al., 1987). TLS wave-
forms were generated by tracing rays from each TLS point within an
ALS beam in the direction of that ALS beam (Hancock et al., 2014),
rejecting rays that were obscured by nearer points. This is illustrated
in Fig. 4. To calculate the vertically projected cover, the process in
Fig. 4 was repeated using vertical square columns.

2.4.1. TLS parameters
Thus there were two TLS parameters that must be specified, qapp

and minGap (Table 2). These were found by optimising the TLS
generated waveform, convolved with the ALS system pulse, against
the raw ALS waveform, less the known modal noise level (step 1
in Fig. 5). The optimisation used the Levenberg-Marquardt method
(Garbow et al., 1980). With these parameters, TLS generated wave-
forms without the ALS system pulse but including attenuation (TLS
visible target profile, black line in Fig. 1 (b)) and without attenuation
(TLS true target profile, red line in Fig. 1 (a)) were generated. Note
that these will give the area projected towards the ALS rather than
the surface area. Correction for angular projection and clumping are
needed to get surface area (Chen et al., 1997). As this paper is primar-
ily interested in estimating vegetation cover rather than calculating
surface area (such as LAI), this was not calculated. The method
presented is a necessary first step in the calculation of surface area.

2.4.2. Calibrating ALS with TLS
In this study the TLS generated waveforms were used to calibrate

ALS processing to extract target profiles from individual ALS beams;
which is the maximum amount of information available to waveform
ALS. The ALS processing can be optimised to match the retrieved
target profile (Fig. 1 (a)) to the TLS generated target profile (Fig. 4)
through step 2 in Fig. 5. As the generation of the TLS waveforms is
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Fig. 9. Gap corrected area error (estimate minus truth) against gap fraction for
processed ALS data. Error bars show one standard deviation.

based on physical optics, there is no issue of cyclic analysis from opti-
mising the two TLS parameters to match the raw ALS waveform and
then optimising the ALS processing to match the TLS target profile.
A number of previous studies have matched ALS to TLS (Ni-Meister
et al., 2008; Stark et al., 2012; Zhao et al., 2013), but only at the plot
scale (tens of metres).

It should be noted that the ALS parameters in Table 2 are instru-
ment specific rather than site specific. So calculating them for the
Leica ALS50-II over one area allows the method to be applied to any
Leica ALS50-II datasets. Other ALS instruments may require different
values.

2.5. Tests performed

The analysis was conducted in three stages, testing each step
of processing described above to ensure that each was suitable for
measuring accurate 3D vegetation structure. The first assessed the
suitability of the TLS data to be used in calibration and validation of
ALS data (method described in Section 2.4 and step 1 in Fig. 5). The
second examined the calibration procedure, identifying any limita-
tions (method in Section 2.4.2 and step 2 in Fig. 5). The accuracy of
the ALS derived voxel product was then assessed and a best combi-
nation chosen (method in Section 2.3 and step 3 in Fig. 5). Finally
the results were compared to the traditional discrete return and
Gaussian decomposed ALS data products.

2.5.1. Step 1: TLS voxelisation
The TLS parameters were found for each individual ALS beam to

see whether a global set of parameters could be found. Sensitivity
to voxel size was also tested. Whilst Calders et al. (2015) showed
that TLS reaches the tree tops and Hancock et al. (2014) showed that
TLS point clouds give accurate gap fractions, Hancock et al. (2014)

Table 4
Optimal denoising parameters along with mean RMSEs between ALS and TLS derived target profiles. Method labels are described in Table 2 and parameter meanings in Table 3.

Method Thresh smooWidth minWidth deconTol threshScale RMSE

GFnt 21 0.379 10 2.575 × 10−9 NA 0.016
GVnt NA 0.076 1 410.375 × 10−9 1.5 0.019
GFh 20 0.195 1 8967.903 × 10−9 NA 0.016
GVh NA 0.487 11 0.00011 × 10−9 1.5 0.016
GFps 16 0.032 1 61.409 × 10−9 NA 0.017
GVps NA 0.249 1 12.797 × 10−9 1.5 0.020
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did not test TLS gap fraction at tree tops and Calders et al. (2015)
did not calculate gap fraction. Other TLS voxel studies either inves-
tigated isolated trees (Béland et al., 2011) or else covered a canopy
with much higher scan densities than are possible in a wide area field
study (Hosoi and Omasa, 2006). To test the ability of the attenuation
correction to overcome any errors at the canopy top, TLS generated
waveforms with the system pulse were compared to raw ALS signal
in areas of tall, dense foliage.
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Fig. 10. Examples of hard target detection.

2.5.2. Step 2: ALS beam level optimisation
A calibration dataset was made up of 317 ALS waveforms from

three plots (1, 3 and 4). These were manually selected to cover
the range of observed waveform shapes (trees, trees with under-
storey, short bushes and hard ground). To avoid areas with changes
in vegetation structure in the two years between data acquisition
(whether growth or human management such as hedge trimming
or shrubbery planting), only waveforms with accurate fits of the
raw ALS to the TLS generated waveforms with system pulse were
used for calibration. An analysis of the impact of changes during the
time between measurements in such a heterogeneous and managed
area was beyond the scope of this paper. ALS processing parame-
ters were found by optimising these 317 waveforms against the TLS
generated target profiles using the Levenberg-Marquardt method
(Garbow et al., 1980). The Levenberg-Marquardt method searches for
local minima of the error surface. In order to find the global minimum
the optimisation was performed with a range of initial parameter
values covering the expected bounds, giving 625 separate optimisa-
tions for each method. The parameter set with the lowest root mean
square error (RMSE) of the ALS to TLS derived foliage profiles was
selected.

Errors due to the attenuation correction were assessed. The accu-
racy was examined for the different ALS waveform shapes to assess
how the method performed over different land cover types.

2.5.3. Step 3: Plot scale validation
A voxel map of vertically projected fractional cover of objects

in voxels in a 35 m sided cube around each plot centre was calcu-
lated separately from the TLS and ALS data for each plot. The TLS
tunable parameters (minGap and qapp Section 2.4) were calculated
for each ALS beam and the mean of all ALS beams intersecting a voxel
used. The ALS parameters calculated in Section 2.5.2 were used. The
ALS data were limited to 1.5 m horizontal (controlled by footprint
density) and 15 cm vertical (controlled by digitisation rate) resolu-
tion, therefore analysis was carried out at 1.5 m horizontal and 50 cm
vertical resolution. The omission-commission errors were assessed,
as given in Eqs. (7) and 8.

Eom =
N(tls>0)∧(als=0)

N(tls>0)
(7)

Ecom =
N(als>0)∧(tls=0)

N(tls=0)
(8)

where; Eom is the omission error

Ecom is the commission error
N(tls>0)∧(als=0) is the number of voxels with positive TLS derived
cover
and zero ALS derived cover
N(als>0)∧(tls=0) is the number of voxels with positive ALS derived
cover
and zero TLS derived cover
N(tls>0) is the number of voxels with positive TLS derived cover
and N(tls=0) is the number of voxels with zero TLS derived cover

The mean TLS derived cover within the N(tls>0)∧(als=0) voxels
and the ALS derived cover within the N(als>0)∧(tls=0) voxels were
calculated to determine the magnitude of the errors. To test the
sensitivity of the final product to the ALS processing parameters,
the noise threshold and deconvolution convergence tolerance were
varied about the optimum values and the omission-commission
errors examined.

The number of TLS, Ntlsbeams, and ALS beams, Nalsbeams, intersecting
each voxel was used as a measure of uncertainty within that voxel, as
the greater the number of beams intersecting a voxel, the greater the
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confidence in the derived canopy cover. In addition the mean RMSE
of the TLS generated waveforms, including system pulse, compared
to the raw ALS waveforms, Dtls−als was recorded per voxel as a mea-
sure of uncertainty due to any change in structure between ALS and
TLS measurements or violations of the assumptions made in the TLS
voxelisation. This is given by:

Dtls−als =
1

Nwaves

Nwaves∑
n=0

√√√√√ 1
Nbins

Nbins∑
i=0

(Itls,n,i − Ials,n,i)
2 (9)

where; Nwaves is the number of ALS waveforms intersecting a voxel

Nbins is the number of waveform bins (256 in this case)
Itls,n,i is intensity within the ith bin of the nth TLS derived
waveform
and Ials,n,i is intensity within the ith bin of the nth ALS derived
waveform

2.5.4. Benchmarking
The agreements between the TLS generated voxel map (used as

truth) and the ALS generated voxels, the discrete return ALS and the
Gaussian decomposed ALS data were visually compared for plots 1
(woodland with dense understorey) and 8 (oak tree with hedge and
lawn) in order to assess the relative information content of the dif-
ferent methods. Vegetation cover maps for different heights above
ground were created over 100 km2 and visually assessed.

3. Results and discussion

3.1. TLS voxelisation results

Fig. 6 shows examples of raw ALS waveforms along with waves
generated from TLS point clouds using the method in Section 2.4. This
shows that, once attenuation and pulse shape are taken into account,
the TLS data are capable of near perfectly recreating the observed
ALS waveforms. This was observed in the majority of ALS waveforms
close to scan centres, unless there were an obvious change in struc-
ture in the two years between measurements. It was found that no
single set of TLS parameters was appropriate for all ALS beams across
all areas, which is not surprising due to target reflectance hetero-
geneity. Therefore a separate pair of TLS parameters was calculated
for each ALS waveform. For the canopy scale voxel map, the mean
TLS parameters for all ALS beams intersecting that voxel were used.
No dependence of accuracy on voxel size was found and so unless
otherwise stated, 50 cm cubic voxels were used for the TLS data.

Fig. 7 shows a raw ALS waveform and TLS generated waveform
with system pulse and ALS attenuation (as in Fig. 1 (c)), with and
without correcting for TLS attenuation. This shows that without
correcting for TLS attenuation (green line), the TLS derived veg-
etation density at the tree top was underestimated compared to
ALS (blue line). Scaling TLS points by the gap fraction up to those
points (purple line) corrected this. This was observed for all ALS

Table 5
Omission-commission errors for voxelisation for all methods with plot 2.

Method Frac pos Pos cover Frac Neg Neg cover

GFnt 9.01% 14.00% 0.51% 12.46%
GVnt 10.39% 12.19% 0.58% 16.76%
GFh 6.27% 21.28% 1.67% 19.93%
GVh 4.17% 17.04% 6.66% 25.35%
GFps 10.47% 12.43% 0.36% 9.28%
GVps 11.22% 13.10% 0.33% 7.64%

Table 6
Omission-commission errors for voxelisation using GFps over plot 2. Values are in %
of voxels with false positives and negatives, and mean cover of those voxels.

Plot Positive Cover Negative Cover

1 11.43% 5.28% 0.34% 14.42%
2 10.47% 12.43% 0.36% 9.28%
3 9.56% 17.06% 0.31% 8.53%
4 7.47% 14.20% 0.34% 8.65%
5 5.74% 13.80% 0.50% 9.19%
6 7.03% 9.82% 0.32% 17.64%
7 5.89% 11.61% 0.79% 16.27%
8 12.02% 9.37% 0.27% 11.47%

waveforms with significant TLS attenuation. This demonstrates that
the TLS processing described in Section 2.4 can be used to generate
the necessary synthetic waveforms to calibrate and validate ALS data.

3.2. ALS optimisation results

Fig. 8 shows the method successfully retrieving the canopy struc-
ture from measured waveforms using the optimum parameters
across the 317 calibration waveforms, given in Table 4. The RMSE is
low and the layers of vegetation have been correctly identified.

Fig. 9 shows the difference between attenuation corrected pro-
jected area from processed ALS data and “true” projected area from
TLS data. This suggests that the attenuation correction will produce
estimates of vegetation area with 90% accuracy until 95% of the
signal has been attenuated, at which point errors increased to 21%.
Therefore understorey is correctly identified under a dense canopy.

3.2.1. Hard targets
Fig. 10 shows two examples of hard targets and one diffuse. The

hard target identification was successful in Fig. 10 (a) whilst that
in Fig. 10 (b) was not correctly identified, leading to a diffuse pro-
cessed waveform that could be interpreted as short vegetation. This
suggests that the correlation threshold used to match returns to the
system pulse may have been too stringent. Increasing the correlation
threshold would correct the examples in Fig. 10, but with the danger
of incorrectly treating diffuse returns as hard targets, such as Fig. 10
(c), where a strong canopy return has been incorrectly identified as
a hard target. The next section will test whether this error had a
significant impact at the plot scale when voxelising.

Table 7
Omission-commission errors for voxelisation using GFps on plot 2 for a range of signal
processing parameters. Values are in % of voxels with false positives and negatives,
and mean cover of those voxels.

Thresh deconTol Frac pos Pos cover Frac Neg Neg cover

14 0.001 × 10−8 10.39 12.02 0.37 9.13
14 0.010 × 10−8 10.39 12.03 0.37 9.13
14 0.100 × 10−8 10.39 12.03 0.37 9.13
14 1.000 × 10−8 10.40 12.06 0.37 9.13
14 10.00 × 10−8 10.43 12.25 0.37 9.12
18 0.001 × 10−8 10.39 12.02 0.37 9.13
18 0.010 × 10−8 10.39 12.03 0.37 9.13
18 0.100 × 10−8 10.39 12.03 0.37 9.13
18 1.000 × 10−8 10.40 12.06 0.37 9.13
18 10.00 × 10−8 10.43 12.25 0.37 9.12
20 0.001 × 10−8 10.39 12.02 0.37 9.13
20 0.010 × 10−8 10.39 12.03 0.37 9.13
20 0.100 × 10−8 10.39 12.03 0.37 9.13
20 1.000 × 10−8 10.40 12.06 0.37 9.13
20 10.00 × 10−8 10.43 12.25 0.37 9.12
24 0.001 × 10−8 10.39 12.02 0.37 9.13
24 0.010 × 10−8 10.39 12.03 0.37 9.13
24 0.100 × 10−8 10.39 12.03 0.37 9.13
24 1.000 × 10−8 10.40 12.06 0.37 9.13
24 10.00 × 10−8 10.43 12.25 0.37 9.12
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3.3. Plot scale analysis

No dependence of errors on the three uncertainty metrics
described in Section 2.5.3 (Ntlsbeams, Nalsbeams and Dtls−als) was found,
suggesting that all the data in the 35 m cubes could be used. The six
denoising methods in Table 3 were compared to choose the most
accurate. The omission-commission errors are shown in Table 5 for
plot 2 (woodland) in terms of the percentage of voxels that show
false positive or negative cover and the mean cover of those false
voxels. The relative differences between the methods at this plot
were representative of all plots.

All methods had false positives in 4% to 11% of the voxels, suggest-
ing that either not all the noise was removed or that deconvolution
was not removing all the system pulse blurring. The false positive
canopy covers were low (12% to 21%) and so would have given small
deviations during the optimisation. These low cover false positives
could be filtered out after the signal processing or the optimisation
could be weighted to more strongly penalise weak false positives.

There were far fewer false negatives (0.33% to 1.7%), with covers of
8% to 20%, except for GVh, which was an outlier with 7% of voxels
having false negatives with a cover of 25%. For this reason GVh was
rejected. Note that the false negatives are 0.3% of voxels that contain
9% vegetation cover to give a 0.03% total canopy cover error.

A hard noise threshold gave half the number of voxels with false
positives as noise tracking, but those voxels had twice the canopy
cover, giving the same final error. Noise tracking gave a much smaller
fraction of voxels with false negatives with a similar mean cover of
those voxels. Examining profiles revealed that the main difference
was in the understorey, where noise tracking’s ability to detect weak
signals was more apparent in plots with dense understorey (plot 1)
than those with sparser understorey (plot 2).

From these results, Gold’s method with a fixed noise threshold,
pre-smoothing and noise tracking (GFps) gave the lowest voxel error,
with the second lowest fraction of voxels with false negatives and
only a 0.07% greater false positive error than GVnt (the lowest false
positive error other than the rejected GVh). The results for GFps over

Fig. 11. Transect through ALS and TLS derived voxels (1.5m horizontal resolution by 50cm vertical resolution). For ALS GFps and TLS colour represents vertically projected cover
(blue, low, to red, high). ALS colouring has been rescaled to remove bias. For discrete return and Gaussian decomposed ALS colour represent return strength in order to illustrate
the amount of information available.
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all plots are shown in Table 6. The fraction of voxels with false nega-
tives was very low in all plots, suggesting that nearly all understorey
is detected. Changes in vegetation structure in the two years between
ALS (2012) and TLS (2014) measurements may have contributed to
the errors, although the dominance of false positives suggests that
this was not the case as we would expect vegetation to grow when no
tree felling was observed by visual comparison of ALS and TLS voxel
maps. The overall accuracy of voxel covers was 24% (RMSE) with a
mean bias of 5.6%, but with no trend with height within the canopy.

3.3.1. Parameter sensitivity
In order to test how sensitive the results were to the denoising

parameters, the plot scale analysis was repeated, varying the thresh-
old (thresh) and deconvolution tolerance (deconTol) to see how
sensitive the voxel maps were to these. The noise threshold was var-
ied from 14 (1 DN above mean noise, the lowest possible threshold)
to 24 (10 standard deviations above mean noise, a very high noise
threshold). The deconvolution tolerance was varied by a factor of
10,000 either side of the optimum value. Table 7 shows the omission-
commission errors using the GFps method over plot 2. This shows
that there was a negligible difference in errors with varying denois-
ing parameters, and so the method is robust to the parameter choice.
All plots showed a similar tolerance to changing parameters, but
note that these are instrument rather than site specific parameters
and so we would expect all sites to behave similarly. The robustness
to threshold is not surprising given the use of threshold insensitive
noise tracking (Hancock et al., 2011) and minimum feature widths
(minWidth). That varying the deconvolution tolerance by a factor of
10,000 did not significantly affect the omission-commission errors
suggests that the solution had already converged to an acceptable
limit at the highest tolerance threshold (10.00 × 10−8), but that the
RMSE relative to TLS did continue to decrease as the threshold was
lowered, and so a lower tolerance was selected as the optimum in
Table 3. This suggests that computational expense could be lowered
by raising the deconvolution tolerance without significantly affecting
the results.

3.4. Benchmarking

Transects:
Fig. 11 shows a side view of a 2 m wide, 35 m long transect

through plots 1 (forest with understorey) and 8 (large tree over a
hedge and lawn) for the TLS and ALS derived voxels. Point clouds
for discrete return ALS and Gaussian decomposed waveform ALS are
shown to illustrate the amount of information available to these
methods. The ALS voxel colour scales were adjusted to remove the
bias shown in Fig. 9.

Whilst Gaussian decomposition has been shown to give accu-
rate estimates of canopy cover over tens of metres (Armston et al.,
2013) and be useful for land cover classification (Mallet et al., 2011),
Fig. 11 shows that it gives limited information on structure within
the canopy and none on the understorey. The discrete return ALS
data gave similarly limited structural information but had the added
disadvantage of giving low intensity returns from the tree tops due
to their diffuse nature (Hancock et al., 2015). Thus no useful radio-
metric information was contained to help calculate canopy cover or
land cover class. Given the low amount of information available to
these methods, no attempt was made to estimate voxelised canopy
cover at high-resolution from them.

In both plots, GFps has retrieved the correct pattern of canopy
cover, with gaps within the tree crown and details of understorey
evident and areas of flat ground correctly identified. There are some
differences, with TLS giving higher covers at the base of the trees
and lower estimates at the top of tall shrubs. ALS will not see trunks
and so a difference is not surprising. The shrubs in plot 1 were very

dense so that disagreement at the top may have been due to high TLS
attenuation.

Fig. 12 shows vegetation cover maps at different heights above
ground over an area with woodland, shrubs and buildings. The ALS
voxel map has successfully detected the path through the trees and
captured the understorey vegetation elsewhere. Variations in under-
storey vegetation, not apparent from the 2D aerial photos, are visible
in the voxel map. Of particular note is that the vegetation at 1 m
above ground is denser along the edge of the woodland than in the
centre, which we would expect due to increased light availability.
Figs. 11 and 13 show that neither the discrete return or Gaussian
decomposed waveform data would be able to identify the difference
between paths and understorey under tree canopies or accurately
determine understorey density at resolutions finer than a few tens
of metres. The lack of information in the centre of Fig. 13 (a) is
particularly notable.

4. Conclusions

A method to produce high resolution voxel maps of vegetation
cover (1.5 m by 1.5 m horizontally by 50 cm vertically), including
understorey, has been presented. Comparison to the commonly used
discrete return and Gaussian decomposition of waveform ALS shows
that the new method captures far more detail on within-canopy and
understorey structure, even through dense woodland canopies, and
can be applied at the landscape scale.

A new method to use terrestrial laser scanner (TLS) data to
calibrate and validate the ALS, instrument specific signal processing
was presented. Some blurring of the voxel map was apparent,

Fig. 12. Cover of voxel layers along with aerial photo.
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(a) Discrete (b) Waveform

Fig. 13. Voxel cover 1m above the ground from discrete return and processed waveform ALS.

leading to 10% of voxels containing low density false positives, but
less than 0.4% of voxels containing vegetation were not detected,
suggesting that nearly all understorey is detected. These false
positives could easily be filtered by removing voxels with less than
a threshold (e.g. 15%) cover. The overall canopy cover accuracy was
24% (RMSE). The results were insensitive to perturbing the pro-
cessing parameters, showing that the method is robust and can be
applied to large areas.

Voxel maps of vegetation cover derived by this method can be
used in a wide range of applications such as monitoring understorey
health and habitat availability, quantifying viewsheds in complex
environments, mapping easy walking routes in forests with closed
canopies, as a direct measure of sunlit and shaded leaf area for
radiative transfer (Kotchenova et al., 2004), investigating ecosystem
services (Grafius et al., 2016) and calculation of explicit clumping
factors for calibrating coarser resolution spaceborne sensors.

The use of TLS data to optimise and validate ALS processing can
be applied to any instrument, biome or ALS processing method. This
optimisation method has been implemented as a C library and is
available online (https://bitbucket.org/StevenHancock/voxel_lidar).
An inter-comparison of all ALS denoising methods using this tool
would allow a thorough comparison and give an insight into their
performance.
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