10 research outputs found

    Metabolites of milk intake: a metabolomic approach in UK twins with findings replicated in two European cohorts

    Get PDF
    Purpose: Milk provides a significant source of calcium, protein, vitamins and other minerals to Western populations throughout life. Due to its widespread use, the metabolic and health impact of milk consumption warrants further investigation and biomarkers would aid epidemiological studies.  Methods: Milk intake assessed by a validated food frequency questionnaire was analyzed against fasting blood metabolomic profiles from two metabolomic platforms in females from the TwinsUK cohort (n = 3559). The top metabolites were then replicated in two independent populations (EGCUT, n = 1109 and KORA, n = 1593), and the results from all cohorts were meta-analyzed.  Results: Four metabolites were significantly associated with milk intake in the TwinsUK cohort after adjustment for multiple testing (P < 8.08 × 10−5) and covariates (BMI, age, batch effects, family relatedness and dietary covariates) and replicated in the independent cohorts. Among the metabolites identified, the carnitine metabolite trimethyl-N-aminovalerate (ÎČ = 0.012, SE = 0.002, P = 2.98 × 10−12) and the nucleotide uridine (ÎČ = 0.004, SE = 0.001, P = 9.86 × 10−6) were the strongest novel predictive biomarkers from the non-targeted platform. Notably, the association between trimethyl-N-aminovalerate and milk intake was significant in a group of MZ twins discordant for milk intake (ÎČ = 0.050, SE = 0.015, P = 7.53 × 10−4) and validated in the urine of 236 UK twins (ÎČ = 0.091, SE = 0.032, P = 0.004). Two metabolites from the targeted platform, hydroxysphingomyelin C14:1 (ÎČ = 0.034, SE = 0.005, P = 9.75 × 10−14) and diacylphosphatidylcholine C28:1 (ÎČ = 0.034, SE = 0.004, P = 4.53 × 10−16), were also replicated.  Conclusions: We identified and replicated in independent populations four novel biomarkers of milk intake: trimethyl-N-aminovalerate, uridine, hydroxysphingomyelin C14:1 and diacylphosphatidylcholine C28:1. Together, these metabolites have potential to objectively examine and refine milk-disease associations

    Etude de l’impact des contraintes de croissance sur des micro-tumeurs

    No full text
    National audienceIn a solid tumor, cancer cells form a mass where the volume is spatially limited by the surrounding tissue. The tumor undergoes compressive stresses that originate from its microenvironment and are induced in particular by its growth. In the case of pancreatic cancer, these stresses are significant and can reach the kilopascal range. They have a considerable influence on cell division, growth and cell motility, potentially leading to the inefficiency of certain drugs.Despite the importance of these studies, few researches have been carried out into understanding the mechanisms inherent in the response under compression. We have developed microfluidic devices to spatially confining tumor subunit models, known as spheroids. Each of the culture chambers contains a sensor (membrane) sensitive to the pressure induced by cell growth. We have also initiated experiments on a promising treatment which could circumvent the apparent inefficacy of conventional therapies under mechanical stress: oncolytic viruses.Using the microfluidic device, we were able to culture spheroids for 5 days and measure growth-induced pressures ranging from 0 to 3kPa. Using a cell line labelled with the FUCCI vector for measuring the phases of the cell cycle, we observed an accumulation of cells in the G1 phase of the cell cycle under the effect of growth-induced pressure. We were also able to study the impact of this pressure on macromolecular crowding present in the cytoplasm of the cells by carrying out rheological measurements using nanoparticles genetically expressed by the cells (GEMs). We observed a decrease in nanoparticle diffusion as the growth-induced pressure increased in the culture chambers. These results suggest that the concentration of macromolecules increases in parallel with the growth-induced pressure.In order to characterize the growth of cells within a spheroid, we carried out simulations using a simple finite element model. It revealed the presence of a pressure gradient in a spheroid that likely facilitate cell division at its periphery. In addition, by immunofluorescence labelling of the Ki-67 protein, we observed a majority of dividing cells at the edges of spheroids. We also carried out rheological measurements on cells located at different positions along the radius of the spheroids. Results show a diffusion gradient ranging from 0.55”m2/s for cells at the edge of the spheroid to 0.3”m2/s for cells located at the heart of the spheroid.Finally, we were able to compare the infection dynamics of oncolytic viruses on cells grown in 2D on substrates of different rigidity. On plastic, the infection dynamics obtained was slightly faster than one on a soft substrate (E=0.5kPa). Furthermore, when the cells were cultured at 2D under the effect of mechanical compression, the results showed a significant delay (40h) on the beginning of infection.In conclusion, we were able to measure spheroid growth-induced pressure using a microfluidic chip and study its impact on cell growth and macromolecular crowding. Results on oncolytic viruses show that infection depends to a greater or lesser extent on the type of mechanical stress applied to the cells. This work provides a new methodological perspective on the spatial confinement of spheroids and raises further questions about our understanding of the mechanisms characterizing the cellular response under compression.Dans une tumeur solide, les cellules cancĂ©reuses forment une masse dont le volume est limitĂ© spatialement par le tissu qui l’entoure. La tumeur subit des contraintes compressives qui proviennent de son microenvironnement et qui sont notamment induites par sa croissance. Dans le cas du cancer du pancrĂ©as, ces contraintes sont importantes et peuvent atteindre l’ordre du kilopascal. Elles ont une influence considĂ©rable sur la division cellulaire, la croissance ainsi que la motilitĂ© des cellules, entrainant potentiellement l’inefficacitĂ© de certains mĂ©dicaments.MalgrĂ© l’importance de ces Ă©tudes, peu de recherches ont Ă©tĂ© menĂ©es sur la comprĂ©hension des mĂ©canismes inhĂ©rents Ă  la rĂ©ponse sous compression. Nous avons mis au point des dispositifs microfluidiques permettant de confiner spatialement des modĂšles de sous-unitĂ©s tumorales, appelĂ©s sphĂ©roĂŻdes. Chacune des chambres de culture comporte un capteur (membrane) sensible Ă  la pression induite par la croissance des cellules. Par ailleurs, nous avons initiĂ© des essais sur un traitement prometteur qui pourrait permettre de contourner l’inefficacitĂ© sous contrainte mĂ©canique de thĂ©rapies usuelles: les virus oncolytiques.GrĂące au dispositif microfluidique, nous avons pu cultiver des sphĂ©roĂŻdes pendant 5 jours et mesurer des pressions de croissance allant de 0 Ă  3kPa. En utilisant une lignĂ©e cellulaire marquĂ©e avec le vecteur FUCCI permettant de mesurer les phases du cycle cellulaire, nous avons observĂ© sous l’effet de la pression de croissance, une accumulation de cellules dans la phase G1 du cycle cellulaire. Nous avons Ă©galement pu Ă©tudier l’impact de cette pression sur l’encombrement macromolĂ©culaire prĂ©sent dans le cytoplasme des cellules en rĂ©alisant des mesures rhĂ©ologiques, faites au moyen de nanoparticules gĂ©nĂ©tiquement exprimĂ©es par les cellules (GEMs). Nous avons observĂ© une diminution de la diffusion des nanoparticules Ă  mesure que la pression de croissance augmentait dans les chambres de culture. Ces rĂ©sultats suggĂšrent que la concentration en macromolĂ©cules augmente en parallĂšle de la pression de croissance.Afin de caractĂ©riser la croissance des cellules au sein d’un sphĂ©roĂŻde, nous avons rĂ©alisĂ© des simulations Ă  partir d’un modĂšle par Ă©lĂ©ments finis simple. Ce dernier met en Ă©vidence la prĂ©sence d’un gradient de pression dans un sphĂ©roĂŻde qui faciliterait vraisemblablement la division des cellules en sa pĂ©riphĂ©rie. De plus, en rĂ©alisant des marquages en immunofluorescence de la protĂ©ine Ki-67, nous avons observĂ© une majoritĂ© de cellules en division en bordure des sphĂ©roĂŻdes. Nous avons Ă©galement rĂ©alisĂ© des mesures rhĂ©ologiques sur des cellules localisĂ©es Ă  diffĂ©rentes positions le long du rayon des sphĂ©roĂŻdes. Les rĂ©sultats montrent un gradient de diffusion, allant de 0,55”m2/s pour des cellules prĂ©sentes au bords du sphĂ©roĂŻde Ă  0,3”m2/s pour des cellules situĂ©es au cƓur du sphĂ©roĂŻde.Enfin, nous avons pu comparer la dynamique d’infection des virus oncolytiques sur des cellules cultivĂ©es Ă  2D sur des substrats de diffĂ©rentes rigiditĂ©s. Sur du plastique, la dynamique d’infection obtenue est lĂ©gĂšrement plus rapide que sur un substrat mou (E=0,5kPa). Par ailleurs, lorsque les cellules sont cultivĂ©es Ă  2D sous l’effet d’une compression mĂ©canique, les rĂ©sultats montrent un important retard (40h) sur le dĂ©but de l’infection.Pour conclure, nous avons pu mesurer la pression de croissance des sphĂ©roĂŻdes au moyen d’une puce microfluidique et Ă©tudier son impact sur la croissance des cellules et l’encombrement macromolĂ©culaire. Des rĂ©sultats prĂ©liminaires sur les virus oncolytiques montrent une dĂ©pendance de l’infection plus ou moins forte en fonction du type de contraintes mĂ©caniques appliquĂ©es sur les cellules. Ces travaux apportent une nouvelle perspective mĂ©thodologique sur le confinement spatial de sphĂ©roĂŻdes et soulĂšvent des questions supplĂ©mentaires quant Ă  la comprĂ©hension des mĂ©canismes caractĂ©risant la rĂ©ponse cellulaire sous compression

    Etude de l’impact des contraintes de croissance sur des micro-tumeurs

    No full text
    National audienceIn a solid tumor, cancer cells form a mass where the volume is spatially limited by the surrounding tissue. The tumor undergoes compressive stresses that originate from its microenvironment and are induced in particular by its growth. In the case of pancreatic cancer, these stresses are significant and can reach the kilopascal range. They have a considerable influence on cell division, growth and cell motility, potentially leading to the inefficiency of certain drugs.Despite the importance of these studies, few researches have been carried out into understanding the mechanisms inherent in the response under compression. We have developed microfluidic devices to spatially confining tumor subunit models, known as spheroids. Each of the culture chambers contains a sensor (membrane) sensitive to the pressure induced by cell growth. We have also initiated experiments on a promising treatment which could circumvent the apparent inefficacy of conventional therapies under mechanical stress: oncolytic viruses.Using the microfluidic device, we were able to culture spheroids for 5 days and measure growth-induced pressures ranging from 0 to 3kPa. Using a cell line labelled with the FUCCI vector for measuring the phases of the cell cycle, we observed an accumulation of cells in the G1 phase of the cell cycle under the effect of growth-induced pressure. We were also able to study the impact of this pressure on macromolecular crowding present in the cytoplasm of the cells by carrying out rheological measurements using nanoparticles genetically expressed by the cells (GEMs). We observed a decrease in nanoparticle diffusion as the growth-induced pressure increased in the culture chambers. These results suggest that the concentration of macromolecules increases in parallel with the growth-induced pressure.In order to characterize the growth of cells within a spheroid, we carried out simulations using a simple finite element model. It revealed the presence of a pressure gradient in a spheroid that likely facilitate cell division at its periphery. In addition, by immunofluorescence labelling of the Ki-67 protein, we observed a majority of dividing cells at the edges of spheroids. We also carried out rheological measurements on cells located at different positions along the radius of the spheroids. Results show a diffusion gradient ranging from 0.55”m2/s for cells at the edge of the spheroid to 0.3”m2/s for cells located at the heart of the spheroid.Finally, we were able to compare the infection dynamics of oncolytic viruses on cells grown in 2D on substrates of different rigidity. On plastic, the infection dynamics obtained was slightly faster than one on a soft substrate (E=0.5kPa). Furthermore, when the cells were cultured at 2D under the effect of mechanical compression, the results showed a significant delay (40h) on the beginning of infection.In conclusion, we were able to measure spheroid growth-induced pressure using a microfluidic chip and study its impact on cell growth and macromolecular crowding. Results on oncolytic viruses show that infection depends to a greater or lesser extent on the type of mechanical stress applied to the cells. This work provides a new methodological perspective on the spatial confinement of spheroids and raises further questions about our understanding of the mechanisms characterizing the cellular response under compression.Dans une tumeur solide, les cellules cancĂ©reuses forment une masse dont le volume est limitĂ© spatialement par le tissu qui l’entoure. La tumeur subit des contraintes compressives qui proviennent de son microenvironnement et qui sont notamment induites par sa croissance. Dans le cas du cancer du pancrĂ©as, ces contraintes sont importantes et peuvent atteindre l’ordre du kilopascal. Elles ont une influence considĂ©rable sur la division cellulaire, la croissance ainsi que la motilitĂ© des cellules, entrainant potentiellement l’inefficacitĂ© de certains mĂ©dicaments.MalgrĂ© l’importance de ces Ă©tudes, peu de recherches ont Ă©tĂ© menĂ©es sur la comprĂ©hension des mĂ©canismes inhĂ©rents Ă  la rĂ©ponse sous compression. Nous avons mis au point des dispositifs microfluidiques permettant de confiner spatialement des modĂšles de sous-unitĂ©s tumorales, appelĂ©s sphĂ©roĂŻdes. Chacune des chambres de culture comporte un capteur (membrane) sensible Ă  la pression induite par la croissance des cellules. Par ailleurs, nous avons initiĂ© des essais sur un traitement prometteur qui pourrait permettre de contourner l’inefficacitĂ© sous contrainte mĂ©canique de thĂ©rapies usuelles: les virus oncolytiques.GrĂące au dispositif microfluidique, nous avons pu cultiver des sphĂ©roĂŻdes pendant 5 jours et mesurer des pressions de croissance allant de 0 Ă  3kPa. En utilisant une lignĂ©e cellulaire marquĂ©e avec le vecteur FUCCI permettant de mesurer les phases du cycle cellulaire, nous avons observĂ© sous l’effet de la pression de croissance, une accumulation de cellules dans la phase G1 du cycle cellulaire. Nous avons Ă©galement pu Ă©tudier l’impact de cette pression sur l’encombrement macromolĂ©culaire prĂ©sent dans le cytoplasme des cellules en rĂ©alisant des mesures rhĂ©ologiques, faites au moyen de nanoparticules gĂ©nĂ©tiquement exprimĂ©es par les cellules (GEMs). Nous avons observĂ© une diminution de la diffusion des nanoparticules Ă  mesure que la pression de croissance augmentait dans les chambres de culture. Ces rĂ©sultats suggĂšrent que la concentration en macromolĂ©cules augmente en parallĂšle de la pression de croissance.Afin de caractĂ©riser la croissance des cellules au sein d’un sphĂ©roĂŻde, nous avons rĂ©alisĂ© des simulations Ă  partir d’un modĂšle par Ă©lĂ©ments finis simple. Ce dernier met en Ă©vidence la prĂ©sence d’un gradient de pression dans un sphĂ©roĂŻde qui faciliterait vraisemblablement la division des cellules en sa pĂ©riphĂ©rie. De plus, en rĂ©alisant des marquages en immunofluorescence de la protĂ©ine Ki-67, nous avons observĂ© une majoritĂ© de cellules en division en bordure des sphĂ©roĂŻdes. Nous avons Ă©galement rĂ©alisĂ© des mesures rhĂ©ologiques sur des cellules localisĂ©es Ă  diffĂ©rentes positions le long du rayon des sphĂ©roĂŻdes. Les rĂ©sultats montrent un gradient de diffusion, allant de 0,55”m2/s pour des cellules prĂ©sentes au bords du sphĂ©roĂŻde Ă  0,3”m2/s pour des cellules situĂ©es au cƓur du sphĂ©roĂŻde.Enfin, nous avons pu comparer la dynamique d’infection des virus oncolytiques sur des cellules cultivĂ©es Ă  2D sur des substrats de diffĂ©rentes rigiditĂ©s. Sur du plastique, la dynamique d’infection obtenue est lĂ©gĂšrement plus rapide que sur un substrat mou (E=0,5kPa). Par ailleurs, lorsque les cellules sont cultivĂ©es Ă  2D sous l’effet d’une compression mĂ©canique, les rĂ©sultats montrent un important retard (40h) sur le dĂ©but de l’infection.Pour conclure, nous avons pu mesurer la pression de croissance des sphĂ©roĂŻdes au moyen d’une puce microfluidique et Ă©tudier son impact sur la croissance des cellules et l’encombrement macromolĂ©culaire. Des rĂ©sultats prĂ©liminaires sur les virus oncolytiques montrent une dĂ©pendance de l’infection plus ou moins forte en fonction du type de contraintes mĂ©caniques appliquĂ©es sur les cellules. Ces travaux apportent une nouvelle perspective mĂ©thodologique sur le confinement spatial de sphĂ©roĂŻdes et soulĂšvent des questions supplĂ©mentaires quant Ă  la comprĂ©hension des mĂ©canismes caractĂ©risant la rĂ©ponse cellulaire sous compression

    Lithographie laser bi-photons pour l'impression de moules PDMS dédiés à des applications micro-fluidique

    No full text
    National audienceLes moules utilisĂ©s pour la fabrication de puces micro-fluidiques sont en gĂ©nĂ©ral fabriquĂ©s Ă  partir de la mise en forme de films secs ou rĂ©sine SU-8 en photolithographie UV. Pour certaines gĂ©omĂ©tries de moule cette technique n’est pas la mieux appropriĂ©e. On observe des limites au respect des cĂŽtes et des difficultĂ©s d’alignement des gĂ©omĂ©tries. Pour amĂ©liorer la qualitĂ© des moules nous avons dĂ©veloppĂ© un nouveau procĂ©dĂ© de fabrication par photo-polymĂ©risation bi-photons de la rĂ©sine IP-S sur silicium. AprĂšs avoir optimisĂ© les stratĂ©gies de dĂ©tection d’interface et de raccordement de champs, nous avons fabriquĂ© des moules de longueur supĂ©rieure Ă  8 mm et comportant des flancs de hauteurs comprises entre 2 et 530 ”m

    Lithographie laser bi-photons pour l'impression de moules PDMS dédiés à des applications micro-fluidique

    No full text
    National audienceLes moules utilisĂ©s pour la fabrication de puces micro-fluidiques sont en gĂ©nĂ©ral fabriquĂ©s Ă  partir de la mise en forme de films secs ou rĂ©sine SU-8 en photolithographie UV. Pour certaines gĂ©omĂ©tries de moule cette technique n’est pas la mieux appropriĂ©e. On observe des limites au respect des cĂŽtes et des difficultĂ©s d’alignement des gĂ©omĂ©tries. Pour amĂ©liorer la qualitĂ© des moules nous avons dĂ©veloppĂ© un nouveau procĂ©dĂ© de fabrication par photo-polymĂ©risation bi-photons de la rĂ©sine IP-S sur silicium. AprĂšs avoir optimisĂ© les stratĂ©gies de dĂ©tection d’interface et de raccordement de champs, nous avons fabriquĂ© des moules de longueur supĂ©rieure Ă  8 mm et comportant des flancs de hauteurs comprises entre 2 et 530 ”m

    Time-resolved X-ray absorption spectroelectrochemistry of redox active species in solution

    No full text
    International audienc

    The microfluidic laboratory at Synchrotron SOLEIL Chaussavoine Igor

    No full text
    International audienceA microfluidic laboratory recently opened at Synchrotron SOLEIL, dedicated to in-house research and external users. Its purpose is to provide the equipment and expertise that allow the development of microfluidic systems adapted to the beamlines of SOLEIL as well as other light sources. Such systems can be used to continuously deliver a liquid sample under a photon beam, keep a solid sample in a liquid environment or provide a means to track a chemical reaction in a time-resolved manner. The laboratory provides all the amenities required for the design and preparation of soft-lithography microfluidic chips compatible with synchrotron-based experiments. Three examples of microfluidic systems that were used on SOLEIL beamlines are presented, which allow the use of X-ray techniques to study physical, chemical or biological phenomena. © 2020 International Union of Crystallography

    A microfluidic mechano-chemostat for tissues and organisms reveals that confined growth is accompanied with increased macromolecular crowding

    No full text
    International audienceConventional culture conditions are oftentimes insufficient to study tissues, organisms, or 3D multicellularassemblies. They lack both dynamic chemical and mechanical control over the microenvironment. While specific microfluidic devices have been developed to address chemical control, they often do not allow the control of compressive forces emerging when cells proliferate in a confined environment. Here, we present a generic microfluidic device to control both chemical and mechanical compressive forces. This device relies on the use of sliding elements consisting of microfabricated rods that can be inserted inside a microfluidic device. Sliding elements enable the creation of reconfigurable closed culture chambers for the study of whole organisms or model micro-tissues. By confining the micro-tissues, we studied the biophysical impact of growth-induced pressure and showed that this mechanical stress is associated with an increase in macromolecular crowding, shedding light on this understudied type of mechanical stress. Our mechano-chemostat allows the long-term culture of biological samples and can be used to study both the impact of specific conditions as well as the consequences of mechanical compression

    EPAC1 Inhibition Protects the Heart from Doxorubicin-Induced Toxicity

    No full text
    Summary Rationale The widely used chemotherapeutic agent Doxorubicin (Dox) induces cardiotoxicity leading to dilated cardiomyopathy and heart failure. This cardiotoxicity has been related to ROS generation, DNA intercalation, bioenergetic distress and cell death. However, alternative mechanisms are emerging, focusing on signaling pathways. Objective We investigated the role of Exchange Protein directly Activated by cAMP (EPAC), key factor in cAMP signaling, in Dox-induced cardiotoxicity. Methods and Results Dox was administrated in vivo (10 ± 2 mg/kg, i . v .; with analysis at 2, 6 and 15 weeks post injection) in WT and EPAC1 KO C57BL6 mice. Cardiac function was analyzed by echocardiography and intracellular Ca 2+ homeostasis by confocal microscopy in isolated ventricular cardiomyocytes. 15 weeks post-injections, Dox-treated WT mice, developed a dilated cardiomyopathy with decreased ejection fraction, increased telediastolic volume and impaired Ca 2+ homeostasis, which were totally prevented in the EPAC1 KO mice. The underlying mechanisms were investigated in neonatal and adult rat cardiac myocytes under Dox treatment (1-10 ÎŒM). Flow cytometry, Western blot, BRET sensor assay, and RT-qPCR analysis showed that Dox induced DNA damage and cardiomyocyte cell death with apoptotic features rather than necrosis, including Ca 2+ -CaMKKÎČ-dependent opening of the Mitochondrial Permeability Transition Pore, dissipation of the Mitochondrial membrane potential (Δψm), caspase activation, cell size reduction, and DNA fragmentation. Dox also led to an increase in both cAMP concentration and EPAC1 protein level and activity. The pharmacological inhibition of EPAC1 (CE3F4) but not EPAC2 alleviated the whole Dox-induced pattern of alterations including DNA damage, Δψm, apoptosis, mitochondrial biogenesis, dynamic, and fission/fusion balance, and respiratory chain activity, suggesting a crucial role of EPAC1 in these processes. Importantly, while preserving cardiomyocyte integrity, EPAC1 inhibition potentiated Dox-induced cell death in several human cancer cell lines. Conclusion Thus, EPAC1 inhibition could be a valuable therapeutic strategy to limit Dox-induced cardiomyopathy without interfering with its antitumoral activity
    corecore