52 research outputs found

    Assessment instruments used for the self-report of pain by hospitalized stroke patients with communication problems: a scoping review protocol

    Get PDF
    Objective: The objective of this scoping review is to systematically identify assessment instruments that are used for the self-report of pain by hospitalized stroke patients with communication problems.Introduction: To the best of the authors’ knowledge, no instruments are specifically dedicated to measuring pain in stroke patients with communication problems, and the pain measurement instruments in general use may complicate pain assessment in these patients. Additionally, there is a lack of consensus regarding these patients’ ability to self-report pain using existing pain instruments. Inclusion criteria: The review will consider studies that focus on hospitalized adults in cases where at least one subgroup has been diagnosed with stroke along with associated communication problems attributable to a stroke. The concepts of interest are assessment instruments used for the self-report of pain by these patients. The scoping review will include systematic reviews, quantitative studies of any design, and mixed methods studies in English.Methods: The search will occur in three phases: an initial limited search, a full search, and a screening of thereference lists of all the included articles. The key information sources include: PubMed, CINAHL, Nursing@Ovid, the Cochrane Library, Web of Science, Scopus, and Embase. All identified citations will be uploaded to a reference management program, and the titles and abstracts screened. Full texts of studies potentially meeting the inclusion criteria will be assessed in detail, with relevant data extracted and reported in tabular as well as descriptive format that aligns with the objectives and scope of this scoping review.Geriatrics in primary carePublic Health and primary car

    Origin of modern syphilis and emergence of a pandemic Treponema pallidum cluster

    Get PDF
    The abrupt onslaught of the syphilis pandemic that started in the late fifteenth century established this devastating infectious disease as one of the most feared in human history. Surprisingly, despite the availability of effective antibiotic treatment since the mid-twentieth century, this bacterial infection, which is caused by Treponema pallidum subsp. pallidum (TPA), has been re-emerging globally in the last few decades with an estimated 10.6 million cases in 2008. Although resistance to penicillin has not yet been identified, an increasing number of strains fail to respond to the secondline antibiotic azithromycin. Little is known about the genetic patterns in current infections or the evolutionary origins of the disease due to the low quantities of treponemal DNA in clinical samples and difficulties in cultivating the pathogen. Here, we used DNA capture and whole-genome sequencing to successfully interrogate genome-wide variation from syphilis patient specimens, combined with laboratory samples of TPA and two other subspecies. Phylogenetic comparisons based on the sequenced genomes indicate that the TPA strains examined share a common ancestor after the fifteenth century, within the early modern era. Moreover, most contemporary strains are azithromycin-resistant and are members of a globally dominant cluster, named here as SS14-Ω. The cluster diversified from a common ancestor in the mid-twentieth century subsequent to the discovery of antibiotics. Its recent phylogenetic divergence and global presence point to the emergence of a pandemic strain cluster

    Footprint of Positive Selection in Treponema pallidum subsp. pallidum Genome Sequences Suggests Adaptive Microevolution of the Syphilis Pathogen

    Get PDF
    In the rabbit model of syphilis, infection phenotypes associated with the Nichols and Chicago strains of Treponema pallidum (T. pallidum), though similar, are not identical. Between these strains, significant differences are found in expression of, and antibody responses to some candidate virulence factors, suggesting the existence of functional genetic differences between isolates. The Chicago strain genome was therefore sequenced and compared to the Nichols genome, available since 1998. Initial comparative analysis suggested the presence of 44 single nucleotide polymorphisms (SNPs), 103 small (≤3 nucleotides) indels, and 1 large (1204 bp) insertion in the Chicago genome with respect to the Nichols genome. To confirm the above findings, Sanger sequencing was performed on most loci carrying differences using DNA from Chicago and the Nichols strain used in the original T. pallidum genome project. A majority of the previously identified differences were found to be due to errors in the published Nichols genome, while the accuracy of the Chicago genome was confirmed. However, 20 SNPs were confirmed between the two genomes, and 16 (80.0%) were found in coding regions, with all being of non-synonymous nature, strongly indicating action of positive selection. Sequencing of 16 genomic loci harboring SNPs in 12 additional T. pallidum strains, (SS14, Bal 3, Bal 7, Bal 9, Sea 81-3, Sea 81-8, Sea 86-1, Sea 87-1, Mexico A, UW231B, UW236B, and UW249C), was used to identify “Chicago-“ or “Nichols -specific” differences. All but one of the 16 SNPs were “Nichols-specific”, with Chicago having identical sequences at these positions to almost all of the additional strains examined. These mutations could reflect differential adaptation of the Nichols strain to the rabbit host or pathoadaptive mutations acquired during human infection. Our findings indicate that SNPs among T. pallidum strains emerge under positive selection and, therefore, are likely to be functional in nature

    Syphilis at the Crossroad of Phylogenetics and Paleopathology

    Get PDF
    The origin of syphilis is still controversial. Different research avenues explore its fascinating history. Here we employed a new integrative approach, where paleopathology and molecular analyses are combined. As an exercise to test the validity of this approach we examined different hypotheses on the origin of syphilis and other human diseases caused by treponemes (treponematoses). Initially, we constructed a worldwide map containing all accessible reports on palaeopathological evidences of treponematoses before Columbus's return to Europe. Then, we selected the oldest ones to calibrate the time of the most recent common ancestor of Treponema pallidum subsp. pallidum, T. pallidum subsp. endemicum and T. pallidum subsp. pertenue in phylogenetic analyses with 21 genetic regions of different T. pallidum strains previously reported. Finally, we estimated the treponemes' evolutionary rate to test three scenarios: A) if treponematoses accompanied human evolution since Homo erectus; B) if venereal syphilis arose very recently from less virulent strains caught in the New World about 500 years ago, and C) if it emerged in the Americas between 16,500 and 5,000 years ago. Two of the resulting evolutionary rates were unlikely and do not explain the existent osseous evidence. Thus, treponematoses, as we know them today, did not emerge with H. erectus, nor did venereal syphilis appear only five centuries ago. However, considering 16,500 years before present (yBP) as the time of the first colonization of the Americas, and approximately 5,000 yBP as the oldest probable evidence of venereal syphilis in the world, we could not entirely reject hypothesis C. We confirm that syphilis seems to have emerged in this time span, since the resulting evolutionary rate is compatible with those observed in other bacteria. In contrast, if the claims of precolumbian venereal syphilis outside the Americas are taken into account, the place of origin remains unsolved. Finally, the endeavor of joining paleopathology and phylogenetics proved to be a fruitful and promising approach for the study of infectious diseases

    Molecular Typing of Treponema pallidum: A Systematic Review and Meta-Analysis

    Get PDF
    Syphilis has been resurgent in many parts of the world in past decades. Understanding the epidemiology of syphilis is important for estimating disease burdens, monitoring epidemic trends, and evaluating intervention activities. Treponema pallidum (T. pallidum), the pathogen of syphilis, cannot be grown in vitro. Because T. pallidum cannot be cultured, molecular typing of T. pallidum is particularly useful and allows for investigation of infection diversity and epidemiology. We conducted a statistical analysis of available published data to investigate the current research progress of molecular typing of syphilis. Our analysis showed that primary lesion was a better specimen for obtaining T. pallidum DNA than blood. Blood specimens collected from scraping the ear lobes had high yield of T. pallidum DNA and high full typing efficiency. Ear lobe blood is a promising specimen for future T. pallidum molecular typing, but further research should verify this finding using a larger sample size. Within all studies, subtype 14d was most prevalent, and subtype distribution varied across geographic areas. Subtype data associated with macrolide resistance and neurosyphilis were limited. More research on molecular typing of T. pallidum can be useful for investigating syphilis epidemiology and designing syphilis control strategies

    Allelic variant in CTLA4

    No full text
    corecore