3,052 research outputs found

    Triggered-Lightning Interaction with a Lightning Protective System: Current Distribution and Electromagnetic Environment

    Get PDF
    A new comprehensive lightning instrumentation system has been designed for Launch Complex 39B (LC3913) at the Kennedy Space Center, Florida. This new instrumentation system includes the synchronized recording of six high-speed video cameras; currents through the nine downconductors of the new lightning protection system for LC3913; four dH/dt, 3-axis measurement stations; and five dE/dt stations composed of two antennas each. A 20:1 scaled down model of the new Lightning Protection System (LPS) of LC39B was built at the International Center for Lightning Research and Testing, Camp Blanding, FL. This scaled down lightning protection system was instrumented with the transient recorders, digitizers, and sensors to be used in the final instrumentation installation at LC3913. The instrumentation used at the ICLRT is also a scaled-down instrumentation of the LC39B instrumentation. The scaled-down LPS was subjected to seven direct lightning strikes and six (four triggered and two natural nearby flashes) in 2010. The following measurements were acquired at the ICLRT: currents through the nine downconductors; two dl-/dt, 3-axis stations, one at the center of the LPS (underneath the catenary wires), and another 40 meters south from the center of the LPS; ten dE/dt stations, nine of them on the perimeter of the LPS and one at the center of the LPS (underneath the catenary wire system); and the incident current. Data from representative events are presented and analyzed in this paper

    Evaluation of the Performance Characteristics of CGLSS II and U.S. NLDN Using Ground-Truth Dalta from Launch Complex 398, Kennedy Space Center, Florida

    Get PDF
    A new comprehensive lightning instrumentation system has been designed for Launch Complex 39B (LC39B) at the Kennedy Space Center, Florida. This new instrumentation system includes seven synchronized high-speed video cameras, current sensors installed on the nine downconductors of the new lightning protection system (LPS) for LC39B; four dH/dt, 3-axis measurement stations; and five dE/dt stations composed of two antennas each. The LPS received 8 direct lightning strikes (a total of 19 strokes) from March 31 through December 31 2011. The measured peak currents and locations are compared to those reported by the Cloud-to-Ground Lightning Surveillance System (CGLSS II) and the National Lightning Detection Network (NLDN). Results of comparison are presented and analyzed in this paper

    A New Lightning Instrumentation System for Pad 39B at the Kennedy Space Center Florida

    Get PDF
    This viewgraph presentation describes a new lightning instrumentation system for pad 39B at Kennedy Space Center Florida. The contents include: 1) Background; 2) Instrumentation; 3) Meteorological Instrumentation; and 4) Lessons learned. A presentation of the data acquired at Camp Blanding is also shown

    Semiclassical approach to fidelity amplitude

    Full text link
    The fidelity amplitude is a quantity of paramount importance in echo type experiments. We use semiclassical theory to study the average fidelity amplitude for quantum chaotic systems under external perturbation. We explain analytically two extreme cases: the random dynamics limit --attained approximately by strongly chaotic systems-- and the random perturbation limit, which shows a Lyapunov decay. Numerical simulations help us bridge the gap between both extreme cases.Comment: 10 pages, 9 figures. Version closest to published versio

    Spectroscopic classification of X-ray sources in the Galactic Bulge Survey

    Get PDF
    We present the classification of 26 optical counterparts to X-ray sources discovered in the Galactic Bulge Survey. We use (time-resolved) photometric and spectroscopic observations to classify the X-ray sources based on their multi-wavelength properties. We find a variety of source classes, spanning different phases of stellar/binary evolution. We classify CX21 as a quiescent cataclysmic variable (CV) below the period gap, and CX118 as a high accretion rate (nova-like) CV. CXB12 displays excess UV emission, and could contain a compact object with a giant star companion, making it a candidate symbiotic binary or quiescent low mass X-ray binary (although other scenarios cannot be ruled out). CXB34 is a magnetic CV (polar) that shows photometric evidence for a change in accretion state. The magnetic classification is based on the detection of X-ray pulsations with a period of 81 ±\pm 2 min. CXB42 is identified as a young stellar object, namely a weak-lined T Tauri star exhibiting (to date unexplained) UX Ori-like photometric variability. The optical spectrum of CXB43 contains two (resolved) unidentified double-peaked emission lines. No known scenario, such as an AGN or symbiotic binary, can easily explain its characteristics. We additionally classify 20 objects as likely active stars based on optical spectroscopy, their X-ray to optical flux ratios and photometric variability. In 4 cases we identify the sources as binary stars.Comment: Accepted for publication in MNRA

    SpheroidJ: An Open-Source Set of Tools for Spheroid Segmentation

    Get PDF
    Background and objectives: Spheroids are the most widely used 3D models for studying the effects of different micro-environmental characteristics on tumour behaviour, and for testing different preclinical and clinical treatments. In order to speed up the study of spheroids, imaging methods that automatically segment and measure spheroids are instrumental; and, several approaches for automatic segmentation of spheroid images exist in the literature. However, those methods fail to generalise to a diversity of experimental conditions. The aim of this work is the development of a set of tools for spheroid segmentation that works in a diversity of settings. Methods: In this work, we have tackled the spheroid segmentation task by first developing a generic segmentation algorithm that can be easily adapted to different scenarios. This generic algorithm has been employed to reduce the burden of annotating a dataset of images that, in turn, has been employed to train several deep learning architectures for semantic segmentation. Both our generic algorithm and the constructed deep learning models have been tested with several datasets of spheroid images where the spheroids were grown under several experimental conditions, and the images acquired using different equipment. Results: The developed generic algorithm can be particularised to different scenarios; however, those particular algorithms fail to generalise to different conditions. By contrast, the best deep learning model, constructed using the HRNet-Seg architecture, generalises properly to a diversity of scenarios. In order to facilitate the dissemination and use of our algorithms and models, we present SpheroidJ, a set of open-source tools for spheroid segmentation. Conclusions: In this work, we have developed an algorithm and trained several models for spheroid segmentation that can be employed with images acquired under different conditions. Thanks to this work, the analysis of spheroids acquired under different conditions will be more reliable and comparable; and, the developed tools will help to advance our understanding of tumour behaviour

    Structure evolution of nanodiamond aggregates: a SANS and USANS study

    Full text link
    Ultra-small-angle neutron scattering (USANS) and small-angle neutron scattering (SANS) measurements, covering length scales from micrometres to nanometres, were made to investigate the structure of nanodiamonds (NDs) and their suspensions. These nanodiamonds were produced by two different techniques, namely by the detonation method and by the laser ablation of a carbon-hydrocarbon mixture. The (U)SANS results indicated the presence of structures four orders of magnitude larger than the dimensions of a single ND particle, consisting of aggregations of ND particles. This aggregation of the ND particles was studied by employing the contrast variation technique. Two different solvents, namely H2O and dimethyl sulfoxide (and their deuterated counterparts), were used to understand the role of hydrogen in the shape and size of the aggregates. The analysis of experimental data from SANS measurements also reveals the ND particles to have an ellipsoidal structure. Using a defined shape model and the SANS contrast variation technique, it was possible to characterize the non-diamond outer shell of the particles and determine the outer layer thickness. This clarification of the structure of the NDs will allow better preparation of suspensions/samples for various applications. Understanding the structure of NDs at multiple length scales also provides crucial knowledge of particle-particle interaction and its effect on the aggregation structures

    Trapping x‐ray radiation damage from homolytic Se–C bond cleavage in BnSeSeBn crystals (Bn=benzyl, CH2C6H5)

    Get PDF
    Irradiation of dibenzyl diselenide BnSeSeBn with X-ray or UV-light cleaves the Se-C and the Se-Se bonds, inducing stable and metastable radical states. They are inevitably important to all natural and life sciences. Structural changes due to X-ray-induced Se-C bond-cleavage could be pin-pointed in various high-resolution X-ray diffraction experiments for the first time. Extended DFT methods were applied to characterize the solid-state structure and support the refinement of the observed residuals as contributions from the BnSeSe • radical species. The X-ray or UV-irradiated crystalline samples of BnSeSeBn were characterized by solid-state EPR. This paper provides insight that in the course of X-ray structure analysis of selenium compounds not only organo-selenide radicals like RSe • may occur, but also organo diselenide BnSeSe • radicals and organic radicals R • are generated, particularly important to know in structural biology

    Simulação do crescimento e desenvolvimento do trigo irrigado utilizando o modelo CERES-Wheat na região de Campinas - SP.

    Get PDF
    Este trabalho tem como objetivos apresentar de forma sucinta o funcionamento do modelo CERES-Wheat inserido na plataforma DSSAT 3.5, assim como apresentar os resultados obtidos das simulações realizadas com o modelo e os observados em experimento de campo, em especial a sua capacidade de detectar os efeitos da aplicação de N sob a fenologia e produtividade de grãos do trigo sob irrigação.bitstream/CNPTIA/9961/1/circtec2.pdfAcesso em: 28 maio 2008
    corecore