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Background and objectives: Spheroids are the most widely used 3D models for studying the effects of dif- 

ferent micro-environmental characteristics on tumour behaviour, and for testing different preclinical and 

clinical treatments. In order to speed up the study of spheroids, imaging methods that automatically seg- 

ment and measure spheroids are instrumental; and, several approaches for automatic segmentation of 

spheroid images exist in the literature. However, those methods fail to generalise to a diversity of exper- 

imental conditions. The aim of this work is the development of a set of tools for spheroid segmentation 

that works in a diversity of settings. 

Methods: In this work, we have tackled the spheroid segmentation task by first developing a generic 

segmentation algorithm that can be easily adapted to different scenarios. This generic algorithm has been 

employed to reduce the burden of annotating a dataset of images that, in turn, has been employed to 

train several deep learning architectures for semantic segmentation. Both our generic algorithm and the 

constructed deep learning models have been tested with several datasets of spheroid images where the 

spheroids were grown under several experimental conditions, and the images acquired using different 

equipment. 

Results: The developed generic algorithm can be particularised to different scenarios; however, those par- 

ticular algorithms fail to generalise to different conditions. By contrast, the best deep learning model, 

constructed using the HRNet-Seg architecture, generalises properly to a diversity of scenarios. In order to 

facilitate the dissemination and use of our algorithms and models, we present SpheroidJ, a set of open- 

source tools for spheroid segmentation. 

Conclusions: In this work, we have developed an algorithm and trained several models for spheroid seg- 

mentation that can be employed with images acquired under different conditions. Thanks to this work, 

the analysis of spheroids acquired under different conditions will be more reliable and comparable; and, 

the developed tools will help to advance our understanding of tumour behaviour. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Cancer is the collective denomination for a group of diseases 

haracterised by abnormal cell growth that can potentially dis- 

eminate, invade, and colonise different parts of the body. It is the 

econd leading cause of death in the world, with approximately 
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.6 million deaths per year [1] . A lot of important mechanisms 

f tumour progression have been described, which enabled de- 

elopment of treatments for various tumour types. However, the 

rocess of implementing one treatment in clinics is a long, expen- 

ive and complex process, as the treatment has to pass different 

roof stages. Namely, from tens of thousands of drugs tested, 

nly one gets the approval for use [2] . This happens because 

ost investigations have been done in two-dimensional (2D) cell 

ulture, and on animal models. However, none of them represents 

roperly the human organism and its response to treatments. 
al., SpheroidJ: An Open-Source Set of Tools for Spheroid Segmen- 
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or example, 2D cultures fail to reproduce the complex structure 

f tumours and their interactions with the surrounding tissue, 

hereas animal models fail to fully mimic the in vivo situation of a 

uman cancer patient. Hence, it is important to have a biomimetic 

reclinical model since such models may shorten preclinical trials 

nd give more reliable results [3,4] . Lately, three-dimensional 

3D) cell cultures are being developed to include cell-cell and 

ell-extracellular matrix interactions and all physico-chemical 

haracteristics of microenvironment, as they have been described 

o play an important role in tumour progression and response to 

reatment [5] . 

Spheroids are the most widely used 3D models since they can 

e used for studying the effects of different micro-environmental 

haracteristics on tumour behaviour and for testing different pre- 

linical and clinical treatments. They are cellular aggregates that 

epresent correctly cell-cell interactions, and formation of oxygen 

nd nutrient gradients [6] . These induce the formation of necrotic 

ore inside the spheroid, a common feature of solid tumours that 

s impossible to reproduce in 2D systems. Spheroids can be grown 

n suspension, replicating isolated solid tumour, or embedded in 

xtracellular matrix proteins, simulating the invasive capacity of 

umour cells. Both necrosis and invasion are indicators of tumour 

rogression and prognosis and their inclusion in a 3D model is es- 

ential for obtaining a more accurate representation of an in vivo 

ancer. 

However, since the interactions in 3D models are radically dif- 

erent from traditional 2D cultures, changes in imaging systems 

nd analysing programs must be made to capture the new com- 

lexities. In particular, imaging methods that automatically seg- 

ent and measure batches of spheroid images are instrumental for 

urther analysis. Several software tools for spheroid segmentation 

re available in the literature in the form of ImageJ plugins [7,8] , 

atlab packages [9,10] or standalone programs [11,12] . In addi- 

ion, several commercial systems, like Celigo [13] or Phaedra [14] ; 

r tools designed to work with concrete microscopes, such as Re- 

iMS [15] and qVista [16] , have been released. Due to the vari- 

nce in sizes, shapes and textures of spheroids, all these tools are 

pecialised in images acquired under certain conditions, and fail 

o generalise properly. An approach to deal with the generalisation 

roblem is the application of data-based methods like deep learn- 

ng [17,18] ; however, deep learning models for spheroid segmen- 

ation [19] are not freely available, and have not been tested in a 

iversity of experimental conditions. 

In this paper, we approach the generalisation problem by com- 

ining traditional imaging processing methods and deep learning 

echniques. Namely, the contributions of this work are as follows: 

• First of all, we present a generic spheroid segmentation al- 

gorithm that can be particularised to different conditions, see 

Section 3 . Such a segmentation algorithm has been employed 

to create a dataset of annotated images to train several deep- 

learning based segmentation models, see Section 4 . The dataset 

of images is freely available at the project webpage for further 

comparisons. 
• We have conducted a thorough comparison of different vari- 

ants of our generic algorithm and our deep learning models 

with images of spheroids with different sizes, shapes and tex- 

tures, see Section 5 . We also compare our approach with sev- 

eral open-source tools, and show how well it generalises to dif- 

ferent experimental conditions. 
• Finally, we have released our algorithms and models in the 

form of a open-source and freely available set of tools; namely, 

an ImageJ plugin and a user-friendly and standalone application 
called SpheroidJ, see Section 6 . i

2 
. Materials and methods 

In our experiments, we have employed images from two differ- 

nt tumour spheroids under different experimental conditions. In 

ddition, images were captured using different equipment (micro- 

copes) and conditions (focus and magnification). 

Human glioblastoma cell lines U87-MG and U251-MG and 

olorectal cancer cell line HCT-116 were purchased from Sigma 

ldrich and American Type Culture Collection, respectively. All 

ell lines were cultured in high-glucose Dulbecco’s modified Ea- 

le’s medium (DMEM) (Lonza, BE12-614F), supplemented with 10% 

oetal bovine serum (FBS) (Sigma, F7524), 1% L-glutamine (Lonza, 

7-605C) and 1% penicillin/streptomycin (Lonza, 17-602E). In or- 

er to follow HCT-116 cells easier during a long period of time, 

hey were transduced with a green fluorescent protein-expressing 

entiviral vector, so while alive, cells produce fluorescent protein. 

ll cell lines were grown in humidified incubator with 5% CO 2 and 

rypsinised twice a week. 

Spheroids were formed using hanging drop method, which en- 

ures the formation of one single spheroid per drop. Shortly, cells 

ere harvested and resuspended at 40 0 0 0 cells/mL in complete 

MEM medium supplemented with 20% methocel. Drops of 25 μL 

ere placed on the top of a petri dish and left for 48h for spheroid

ormation. For suspension culture, spheroids were transferred to 

ound bottom 96 well plate (Sarstedt, 83.3925.500) treated with 

nti-adherence rinsing solution (Stemcell, 07010). To investigate 

he importance of nutrients or growth factors present in microen- 

ironment, spheroids were grown in media with different chemical 

omposition. Besides, suspension culture was used to evaluate the 

fficacy of tested drugs. For invasion assays, spheroids were em- 

edded in rat tail type I collagen hydrogels. Different final concen- 

rations of collagen enabled studying the effect of different matrix 

tiffness on spheroid behaviour. 

Spheroid growth and invasion were followed for up to two 

onths by brightfield and fluorescence imaging, using Nikon 

clipse Ti-E C1 and Leica DMi8 microscopes. Transduced cells were 

maged using GFP filter set. Images were acquired using 2x and 10x 

agnification on Nikon microscope and 5x on Leica microscope. 

he images were organised in 6 datasets (3 brightfield datasets 

nd 3 fluorescence datasets), and their features are summarised in 

able 1 — the datasets are available at the project webpage. In ad- 

ition to those datasets, we have also employed the dataset pro- 

ided in [7] . A sample from each dataset is provided in Fig. 1 . As

an be seen in such a figure, our images contain a single spheroid 

er image since we employ the hanging drop method, which en- 

ures the formation of one single spheroid per drop, and permits 

s to study the behaviour of the tumour and the effect of tested 

ompounds, excluding interactions with other spheroids. 

. A generic segmentation algorithm 

In this section, we present our generic algorithm for segment- 

ng spheroids. Such an algorithm can be particularised in different 

ays to produce distinct segmentation procedures that are useful 

or several scenarios. 

.1. Generic segmentation algorithm 

Given an image containing a spheroid, our generic algorithm 

ims to produce a mask for the region that contains it. Our al- 

orithm, that is diagrammatically described in Fig. 2 , is based on 

he sequential application of several image processing techniques, 

uch as edge detection or thresholding, and morphological opera- 

ions like dilation or erosion. Namely, the procedure can be split 

nto two steps: contour generation and contour refinement. 
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Table 1 

Features of the 7 datasets employed in this work. The datasets are named with the following convention: the first character of the name 

indicates whether is a brightfield (B) or a fluorescence dataset (F); the second, the microscope; the third, the magnification; and, the 

fourth, the culture media. 

Dataset Method � Images Image size Microscope Magnification Format Type Culture 

BL5S Brightfield 50 1296 × 966 Leica 5x TIFF RGB Suspension 

BN2S Brightfield 154 1002 × 1004 Nikon 2x ND2 Gray 16bits Suspension 

BN10S Brightfield 105 1002 × 1004 Nikon 10x ND2 Gray 16bits Suspension 

FL5C Fluorescence 19 1296 × 966 Leica 5x TIFF RGB Collagen 

FL5S Fluorescence 50 1296 × 966 Leica 5x TIFF RGB Suspension 

FN2S Fluorescence 34 1002 × 1004 Nikon 2x ND2 Gray 16bits Suspension 

BO10S [7] Brightfield 64 3136 × 2152 Olympus 10x JPG RGB Suspension 

Fig. 1. Samples from the 7 datasets employed in this work. 

Fig. 2. Generic algorithm for spheroid segmentation. 
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In the first step, the algorithm tries to find the contour of the 

pheroid, either by binarising the image, or by finding the edges of 

he image and later binarising it. This step can be particularised in 

wo different ways. First, the Sobel edge detector [20] can be iter- 

ted several times on the image to detect a closed contour, this it- 

rative procedure can be employed when the edges of the spheroid 

re not clear, and, it terminates when a region that satisfies some 

onditions, related to size and solidity, is found or a number of it- 

rations fixed by the user is reached. And, second, the threshold 

alues to binarise the image can be fixed manually, or automati- 

ally selected by using algorithms like IsoData [21] or Otsu [22] . 

Once the contour of the image is generated, the second step of 

ur algorithm refines such a contour to find the region where the 

pheroid is located. First of all, the algorithm tries to close the con- 

our region by applying several times the dilation operation, and 

ubsequently filling the holes produced in the image. The dilation 

peration has the undesirable effect of producing a segmentation 

hat is bigger than the actual region of the spheroid; therefore, an 

rosion operation is applied, as many times as the dilation opera- 

ion was applied, to adjust that region. Finally, the watershed oper- 

tion [23] is applied to remove artefacts that do not belong to the 
a

3 
pheroid. An example showing the application of our procedure is 

epicted in Fig. 3 . 

As it can be noted from the above description, our generic algo- 

ithm can be customised by fixing 5 parameters: (1) the number of 

terations that the Sobel edge detector is applied; (2) the thresh- 

lding method; (3) the number of times that the dilation and ero- 

ion operations are employed; (4) whether the fill holes operation 

s applied; and (5) whether the watershed operation is employed. 

.2. Particular algorithms 

Due to the different nature of spheroid images, we have partic- 

larised our generic algorithm using 5 strategies; that is, using dif- 

erent values for the 5 parameters of our segmentation algorithm. 

n addition, several variants of our algorithm are combined to deal 

ith those cases where a proper spheroid mask is not generated. 

e consider a mask as valid when it has a minimum size and 

atisfies some solidity conditions — note that these conditions de- 

end on the particular characteristics of the spheroid image. The 

est of this section is devoted to present the 5 versions of our 

lgorithm. 
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Fig. 3. Example of the application of our generic algorithm for a sample from the BN10S dataset. (1) Find edges; (2) Binarising; (3) Dilation; (4) Fill holes; (5) Erosion; (6) 

Final segmentation (in yellow). 
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A1. Threshold The first strategy is based on just binarising the 

pheroid images by using the IsoData method [21] . In those cases 

here such a direct approach does not produce a valid mask, we 

equentially binarise the image, dilate it, fill the holes, erode the 

mage, and, finally, apply the watershed operation. This straightfor- 

ard approach is useful when the spheroid image can be clearly 

istinguished from the background of the image. 

A2. Edges The second strategy does not directly binarise the im- 

ge but it firstly finds the edges of the image, and subsequently 

inarise the image using the IsoData method. In case that the 

ethod does not work, the number of iterations that the find 

dges operation is applied is increased. The process stops after a 

alid mask is found or when a number of iterations is reached. 

A3. Threshold+Edges This approach is a sequential application of 

lgorithms A1 and A2. Namely, it starts applying the threshold ap- 

roach, and if it fails to find a valid mask, it applies the edges ap-

roach. 

A4. Threshold & edges This strategy applies both Algorithms A1 

nd A2 to the input image, adds the two resulting masks, and fills 

he holes of the resulting mask to produce the final output. 

A5. Fluorescence Finally, we have designed an algorithm that 

akes advantage of images acquired with fluorescence. To this aim, 

he normal image is processed by sequentially finding its edges 

nd binarising it; and, the fluorescence image is binarised using 

he IsoData thresholding method. The two images produced in this 

ay are combined using the AND binary operation to output the 

ask. 

. Deep learning segmentation algorithms 

In this section, we present the deep learning approach that we 

ave followed for segmenting spheroids 1 . Nowadays, deep learning 

echniques are the state of the art approach to deal with computer 

ision tasks particularly in medicine [24–27] . The main drawback 

f deep learning methods is that they are data demanding, and re- 

uire a considerable number of annotated images to train mod- 

ls from scratch [28] . In this work, we face this problem by us-

ng two widely employed techniques to train a model with a small 

ataset: data augmentation [29] (a technique that consists in gen- 

rating new training samples from the original training dataset by 

pplying transformations that do not alter the class of the data) 

nd transfer learning [30] (a technique that reuses the knowledge 
1 The notebooks, models, and datasets employed in this section are available at 

ttps://github.com/WaterKnight1998/Deep- Tumour- Spheroid . S

4 
earned in a different task to train a new model). In addition, we 

artially automatise the annotation task by using the generic algo- 

ithm presented in the previous section. Namely, we constructed 

 datasets for training several deep-learning based algorithms that 

roduce as a result different segmentation models. 

The datasets employed for training the deep learning algo- 

ithms were constructed as follows. First, a total of 1645 images 

ere acquired using the settings from datasets BL5S, BN2S and 

N10S presented in Table 1 — these images are independent from 

he datasets employed for evaluation and presented in Table 1 . 

rom those images, 838 images were manually annotated by ex- 

erts using the free hand tool of ImageJ [31] . Those 838 images 

orm the manually annotated dataset; and such a dataset was 

plit into a training set of 621 images, and a validation set of 

17 images. The training dataset was augmented in three differ- 

nt ways: (1) using data augmentation (by applying on-the-fly di- 

edral transformations and rotations with the Albumentations li- 

rary [32] ); (2) automatically annotating the other 807 acquired 

mages with the versions A1–A4 of the generic algorithm pre- 

ented in Section 3.2 (the annotations were manually validated, 

nd for each image the best result produced by algorithms A1–A4 

as selected; a total of 359 automatically annotated images were 

ismissed since none of the algorithms produced a valid result); 

nd (3) applying data augmentation to (2). 

From the training datasets, we fine-tuned several deep- 

earning segmentation algorithms [30] ; namely, we have 

rained 5 architectures: U-Net [17] (with a Resnet 34 back- 

one), DeepLabV3+ [33] (with a Resnet 50 backbone), Mask 

CNN [34] (with a Resnet 50 backbone), HRNet-Seg [35] (with 

n HRNet W30 backbone) and U 

2 -net [36] (with its underlying 

ackbone). The definition of those 5 architectures are available in 

he SemTorch package 2 . All the architectures were trained with 

he libraries PyTorch [37] and FastAI [38] and using a GPU Nvidia 

TX 2080 Ti. In order to set the learning rate for the different 

rchitectures, we employed the procedure presented in [38] ; 

nd, we applied early stopping in all the architectures to avoid 

verfitting. As a result of the training process, 5 models were 

roduced that can be used for inference by providing them a 

pheroid image as input, and they will output the mask associated 

ith the segmentation. 

The results achieved by the constructed models in the valida- 

ion set are presented in Table 2 . The metric employed to measure 
2 The SemTorch package is available at https://github.com/WaterKnight1998/ 

emTorch . 

https://github.com/WaterKnight1998/Deep-Tumour-Spheroid
https://github.com/WaterKnight1998/SemTorch
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Table 2 

Jaccard index for the validation set obtained by each model using different training datasets and augmentation 

regimes. The best result is highlighted in bold face. 

Manual Manual (Augmented) Manual & Automatic Manual & Automatic (Augmented) 

DeepLabV3 + 0.9267 0.9255 0.9502 0.9419 

HRNet-seg 0.9141 0.9333 0.9512 0.9478 

Mask-RCNN 0.8781 0.8796 0.8942 0.8926 

U-Net 0.8819 0.9209 0.9431 0.9466 

U 

2 -Net 0.8857 0.8657 0.9462 0.9408 

Table 3 

Mean (and standard deviation) for the brightfield datasets. The best result for each dataset is highlighted in bold face, ∗∗∗ρ < 0 . 001 , > significant difference between 

methods. In, Iv, K, C, and D stand for Insidia, Ivanov, K-means, Canny, and Deep, respectively. 

Insidia Ivanov K-means Canny A1 A2 A3 A4 Deep Friedman 

Test 

Dunn test 

BL5S 0(0) 0(0) 0(0) 0.64 (0.30) 0.55(0.33) 0.31(0.42) 0.63(0.39) 0(0) 0.75(0.25) 293.231 ∗∗∗ D,C,A3,A1 > A2,A4,In,Iv,K 

BN2S 0.65(0.35) 0.2(0.36) 0.14 (0.30) 0.85 (0.09) 0.93(0.04) 0.94(0.02) 0.72(0.35) 0.73(0.35) 0.96 (0.01) 801.601 ∗∗∗ D > A2,A1 > C,A4,A3,In > Iv, K 

BN10S 0.84(0.07) 0.03(0.18) 0.26 (0.36) 0.38 (0.10) 0.65(0.38) 0.69(0.42) 0.6(0.42) 0.95(0.01) 0.97 (0.01) 380.116 ∗∗∗ D > A4 > In,A2,A1,A3,C,K > Iv 

BO10S 0.91(0.09) 0.94(0.17) 0.77(0.35) 0.88 (0.05) 0.94(0.03) 0.42(0.42) 0.79(0.36) 0.88(0.10) 0.92 (0.03) 254.627 ∗∗∗ A1,Iv > D,In,A4,C,A3,K > A2 

Combined 0.64(0.37) 0.28(0.43) 0.27(0.40) 0.72(0.24) 0.81(0.27) 0.68(0.41) 0.7(0.39) 0.74(0.35) 0.92 (0.12) 298.238 ∗∗∗ D > A1 > A4,A3,A2 > C,In > Iv,K 
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a

Fig. 4. SpheroidJ plugin window to configure the segmentation algorithm. 
he accuracy of the different methods is the IoU, also known as Jac- 

ard index — this metric measures the area of intersection between 

he ground truth and the predicted region over the area of union 

etween the ground truth and the predicted region. As can be seen 

n Table 2 , data augmentation does not produce considerable ben- 

fits in this context; by contrast, better results are obtained for all 

he architectures when the automatically annotated dataset is em- 

loyed; namely, the model trained using the HRNet-seg architec- 

ure achieves the best results. In the next section, we show that 

his model generalises to images that were not employed during 

he training process, even if they were acquired with a different 

etting. 

. Results and discussion 

In this section, we compare the different versions of our generic 

lgorithm and the best model constructed in the previous section. 

o this aim, we have employed the datasets presented in Section 2 . 

n addition, we include in the comparison two classical segmenta- 

ion algorithms that are K-means clustering [39] and Canny seg- 

entation [40] , and two open-source Fiji macros: Insidia [8] , and 

he macro presented in [7] (from now on, this macro will be called 

Ivanov”) — other tools exists in the literature, but they are not 

reely available or only work with concrete microscopes. As in the 

revious section, the Jaccard index is employed to evaluate the dif- 

erent algorithms. We first analyse the 4 brightfield datasets; and, 

fter that, the fluorescence datasets. 

The results for the brightfield datasets are presented in Table 3 . 

 statistical analysis of such results is also included. In particular, 

riedman tests were carried out to compare the total scores for 

he seven methods. When significant differences among the meth- 

ds were found, a Dunn-Bonferroni pairwise post hoc test was also 

ncluded. We can notice that the deep model achieves the best re- 

ults for the datasets acquired with the same settings that those 

sed for training the model; moreover, it generalises properly to a 

ataset of images acquired with a completely different setting (the 

O10S dataset) and the results are close to the best models. Hence, 

ven if the particular versions of the generic algorithm can obtain 

ood results for different datasets, they must be adjusted; by con- 

rast, the deep model can be employed across all datasets without 

odifying it. In addition, our generic method and the deep model 

utperform both Insidia and Ivanov tools, two macros that are 

ased on image processing techniques and suffer from the same 

eneralisation problem as the particular version of our generic al- 

orithm: they work properly for a particular kind of images, but 
5 
hey fail when the settings are changed. Finally, the deep model 

lso obtains better results than those achieved by the general pur- 

ose algorithms (K-means clustering and Canny). 

On the contrary to the brightfield datasets, the deep model only 

chieves the best results in one of the datasets; and, Algorithm A5 

roduces better results than the other algorithms for the other flu- 

rescence datasets, see Table 4 . This is due to the fact that, Algo- 

ithm A5, as well as humans, not only uses the brightfield image 

or segmentation, but it also takes advantage of the fluorescence 

mage where the location of the spheroid region is clearly defined 

the accuracy of all the other studied methods and macros is 

onsiderably lower than the accuracy obtained by Algorithm A5 

ince they only consider the brightfield image. However, since the 

pheroid region of a fluorescence image does not perfectly adjust 

o the spheroid, this produces a lower accuracy than the methods 

or the brightfield datasets. 

As we have seen throughout this section, our deep learning 

odel can be successfully applied to a wide variety of settings; 

nd, additionally, it might be worth trying different approaches 

ased on our generic algorithm, specially when working with flu- 

rescence images. To facilitate the dissemination and use of our 

ethods, we have developed a tool called SpheroidJ. 

. SpheroidJ 

We have released our methods in an open-source and freely 

vailable program, called SpheroidJ. This tool can be employed as 
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Table 4 

Mean (and standard deviation) for the fluorescence datasets. The best result for each dataset is highlighted in bold face, ∗∗∗ρ < 0 . 001 , > significant difference between 

methods. In, Iv, K, C, and D stand for Insidia, Ivanov, K-means, Canny, and Deep, respectively. 

Insidia Ivanov K-means Canny A1 A2 A3 A4 A5 Deep Friedman 

Test 

Dunn test 

FL5C 0.12(0.24) 0.09(0.28) 0.21(0.29) 0.32(0.25) 0.53(0.37) 0(0) 0.4(0.37) 0(0) 0.67(0.17) 0.71 (0.30) 112.844 ∗∗∗ D,A5,A1 > A3,C,K,In,Iv,A2,A4 

FL5S 0.51(0.24) 0.04(0.1) 0.08(0.11) 0.07(0.13) 0.31(0.21) 0.04(0.14) 0.42(0.27) 0(0) 0.89(0.07) 0.70 (0.26) 268.033 ∗∗∗ A5,D > In,A3,A1,A2,Iv,K,C,A4 

FN2S 0.03(0.02) 0(0) 0.02(0.01) 0.29(0.40) 0.65(0.3) 0.47(0.36) 0.02(0.16) 0.05(0.04) 0.82(0.17) 0.78 (0.20) 211.293 ∗∗∗ A5,D,A1 > A2,C,A4,In,K,A3,Iv 

Combined 0.25(0.29) 0.03(0.15) 0.08(0.16) 0.20(0.30) 0.48(0.32) 0.19(0.32) 0.27(0.32) 0.03(0.10) 0.82(0.16) 0.74 (0.25) 442.198 ∗∗∗ A5,D > A1 > A3,In,A2,C,K,A4,Iv 

Fig. 5. SpheroidJ standalone application. 
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 Python library, an ImageJ plugin, and also as a standalone ap- 

lication. The Python library is an API that provides access to the 

eep learning model; the ImageJ plugin and the standalone appli- 

ation include all the methods presented in this work, and deserve 

 more detailed explanation. 

ImageJ [31] is an image-analysis tool that has been widely 

mployed to deal with many problems in life sciences, and that 

an be easily extended by means of plugins. The SpheroidJ plu- 

in can be called from the ImageJ interface and provides two ex- 

cutions modes: the batch mode and the experimental mode. The 

atch mode allows the users to segment the spheroid images of 

 folder by employing either any of the 5 algorithms presented in 

ection 3.2 or the deep model presented in Section 4 — this mode 

as been designed to include other methods and models in the 

uture. The experimental mode allows the users to configure the 

eneric algorithm presented in Section 3.1 to deal with their own 

mages. The parameters of the algorithm can be configured from 

he window presented in Fig. 4 and applied either to a single im- 

ge or a folder of images. The result outputted by both modes are 

he spheroid segmentations, and an Excel file with a summary of 

easures (such as the area, perimeter, circularity or Feret’s diame- 

er) extracted from the segmented images. 

This ImageJ plugin has a main drawback: it does not provide 

 simple way of visualising and editing the segmentation results 

hen dealing with a folder of images. This issue has been tackled 

ith the development of a user-friendly and standalone applica- 
a

6 
ion. This tool provides the same functionality explained for the 

mageJ plugin, but after the segmentation process, it shows the re- 

ults using the interface presented in Fig. 5 . In this way, the users 

an easily inspect the segmentation result, try different algorithms 

or a single image, and manually edit the segmented region if it 

as not properly detected. 

. Conclusions 

Due to the variance in sizes, shapes and textures of spheroids, 

t is challenging to define a set of rules to segment them. In this 

aper, we have tackled this challenge by designing a customisable 

lgorithm that can be successfully adapted to different kinds of 

pheroid images. In addition, this generic algorithm has been the 

asis to reduce the burden of annotating a dataset of images to 

rain deep learning models. Both our generic algorithm and deep 

earning model can be applied in a wide variety of images; how- 

ver, it is recommended to use the deep learning model since it 

oes not require any configuration. SpheroidJ is specialised in im- 

ges containing a single spheroid, but it can also be employed to 

egment images with multiple or combined spheroids. 

In order to facilitate the dissemination of our methods, we have 

eleased SpheroidJ, an open-source that can be used both as an Im- 

geJ plugin and a standalone application. Thanks to this work, the 

nalysis of spheroids acquired under different conditions will be 
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ore reliable and comparable; and, the developed tools will help 

o advance our understanding of tumour behaviour. 

vailability and requirements 

• Project name: SpheroidJ. 
• Project home page: https://github.com/joheras/SpheroidJ . 
• Operating system(s): Platform independent. 
• Programming language: Java and Python. 
• Other requirements: Java 8 and Python 3.6. The use of the 

deep learning segmentation model requires the installation of 

a Python package called Deep- Tumour- Spheroid . 
• License: GNU GPL v3. 
• Any restrictions to use by non-academics: restrictions specified 

by GNU GPL v3. 

The instructions to install and use SpheroidJ are provided in the 

roject webpage. The code, datasets and ground truth employed in 

his work are also available at the project webpage. 
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