60 research outputs found
Search for the best indicators for the presence of a VPS13B gene mutation and confirmation of diagnostic criteria in a series of 34 patients genotyped for suspected Cohen syndrome
BACKGROUND: Cohen syndrome is a rare autosomal recessive inherited disorder that results from mutations of the VPS13B gene. Clinical features consist of a combination of mental retardation, facial dysmorphism, postnatal microcephaly, truncal obesity, slender extremities, joint hyperextensibility, myopia, progressive chorioretinal dystrophy, and intermittent neutropenia.PATIENTS AND METHODS: The aim of the study was to determine which of the above clinical features were the best indicators for the presence of VPS13B gene mutations in a series of 34 patients with suspected Cohen syndrome referred for molecular analysis of VPS13B. RESULTS: 14 VPS13B gene mutations were identified in 12 patients, and no mutation was found in 22 patients. The presence of chorioretinal dystrophy (92% vs 32%, p=0.0023), intermittent neutropenia (92% vs 5%, p<0.001), and postnatal microcephaly (100% vs 48%, p=0.0045) was significantly higher in the group of patients with a VPS13B gene mutation compared to the group of patients without a mutation. All patients with VPS13B mutations had chorioretinal dystrophy and/or intermittent neutropenia. The Kolehmainen diagnostic criteria provided 100% sensibility and 77% specificity when applied to this series. CONCLUSION: From this study and a review of more than 160 genotyped cases from the literature, it is concluded that, given the large size of the gene, VPS13B screening is not indicated in the absence of chorioretinal dystrophy or neutropenia in patients aged over 5 years. The follow-up of young patients could be a satisfactory alternative unless there are some reproductive issues
Identifying Human Disease Genes through Cross-Species Gene Mapping of Evolutionary Conserved Processes
Understanding complex networks that modulate development in humans is hampered by genetic and phenotypic heterogeneity within and between populations. Here we present a method that exploits natural variation in highly diverse mouse genetic reference panels in which genetic and environmental factors can be tightly controlled. The aim of our study is to test a cross-species genetic mapping strategy, which compares data of gene mapping in human patients with functional data obtained by QTL mapping in recombinant inbred mouse strains in order to prioritize human disease candidate genes.We exploit evolutionary conservation of developmental phenotypes to discover gene variants that influence brain development in humans. We studied corpus callosum volume in a recombinant inbred mouse panel (C57BL/6J×DBA/2J, BXD strains) using high-field strength MRI technology. We aligned mouse mapping results for this neuro-anatomical phenotype with genetic data from patients with abnormal corpus callosum (ACC) development.).This approach that exploits highly diverse mouse strains provides an efficient and effective translational bridge to study the etiology of human developmental disorders, such as autism and schizophrenia
De novo TBR1 variants cause a neurocognitive phenotype with ID and autistic traits:report of 25 new individuals and review of the literature
TBR1, a T-box transcription factor expressed in the cerebral cortex, regulates the expression of several candidate genes for autism spectrum disorders (ASD). Although TBR1 has been reported as a high-confidence risk gene for ASD and intellectual disability (ID) in functional and clinical reports since 2011, TBR1 has only recently been recorded as a human disease gene in the OMIM database. Currently, the neurodevelopmental disorders and structural brain anomalies associated with TBR1 variants are not well characterized. Through international data sharing, we collected data from 25 unreported individuals and compared them with data from the literature. We evaluated structural brain anomalies in seven individuals by analysis of MRI images, and compared these with anomalies observed in TBR1 mutant mice. The phenotype included ID in all individuals, associated to autistic traits in 76% of them. No recognizable facial phenotype could be identified. MRI analysis revealed a reduction of the anterior commissure and suggested new features including dysplastic hippocampus and subtle neocortical dysgenesis. This report supports the role of TBR1 in ID associated with autistic traits and suggests new structural brain malformations in humans. We hope this work will help geneticists to interpret TBR1 variants and diagnose ASD probands
X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes
X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or loci are yet to be identified. Here, we have investigated 405 unresolved families with XLID. We employed massively parallel sequencing of all X-chromosome exons in the index males. The majority of these males were previously tested negative for copy number variations and for mutations in a subset of known XLID genes by Sanger sequencing. In total, 745 X-chromosomal genes were screened. After stringent filtering, a total of 1297 non-recurrent exonic variants remained for prioritization. Co-segregation analysis of potential clinically relevant changes revealed that 80 families (20%) carried pathogenic variants in established XLID genes. In 19 families, we detected likely causative protein truncating and missense variants in 7 novel and validated XLID genes (CLCN4, CNKSR2, FRMPD4, KLHL15, LAS1L, RLIM and USP27X) and potentially deleterious variants in 2 novel candidate XLID genes (CDK16 and TAF1). We show that the CLCN4 and CNKSR2 variants impair protein functions as indicated by electrophysiological studies and altered differentiation of cultured primary neurons from Clcn4−/− mice or after mRNA knock-down. The newly identified and candidate XLID proteins belong to pathways and networks with established roles in cognitive function and intellectual disability in particular. We suggest that systematic sequencing of all X-chromosomal genes in a cohort of patients with genetic evidence for X-chromosome locus involvement may resolve up to 58% of Fragile X-negative cases
Lung disease associated with periventricular nodular heterotopia and an FLNA mutation
X-linked periventricular nodular heterotopia (PH) is a neuronal migration disorder caused by mutations in the gene encoding filamin A (FLNA). High phenotypic diversity, ranging from PH to otopalatodigital syndrome and frontometaphyseal dysplasia has been described in association with FLNA mutations. Extra-neurological features including cardiovascular abnormalities, coagulopathy, skeletal dysplasia and joint hypermobility have sometimes been described in patients with PH. Respiratory manifestations have not been associated with FLNA disorders with the exception of tracheal stenosis and pulmonary hypoplasia associated with frontometaphyseal dysplasia and Melnick-Needles syndrome. Here, we report on a male patient aged 6 years presenting with a mosaic nonsense mutation c.994delG within the FLNA gene, PH and severe congenital lung disease comprising bilateral atelectasis, lung cysts, tracheobronchomalacia, pulmonary arterial hypertension and long-term oxygen dependence; histology of resected lung showed panpulmonary emphysema with marked reduction of bronchial cartilage. Rare male patients with PH and FLNA mutations have already been reported, usually with early lethality. These observations suggest the possibility of a link between FLNA mutations and congenital lung disease. A prospective study of patients with PH and FLNA mutations would be helpful in order to test this hypothesis.Alice Masurel-Paulet, Eric Haan, Elizabeth M. Thompson, Cyril Goizet, Christel Thauvin-Robinet, Andrew Tai, Declan Kennedy, Greg Smith, Teck Yee Khong, Guilhem Solé, Elodie Guerineau, Isabelle Coupry, Frédéric Huet, Stephen Robertson, Laurence Faivr
- …