141 research outputs found
The intestinal expulsion of the roundworm Ascaris suum is associated with eosinophils, intra-epithelial T cells and decreased intestinal transit time
Ascaris lumbricoides remains the most common endoparasite in humans, yet there is still very little information available about the immunological principles of protection, especially those directed against larval stages. Due to the natural host-parasite relationship, pigs infected with A. suum make an excellent model to study the mechanisms of protection against this nematode. In pigs, a self-cure reaction eliminates most larvae from the small intestine between 14 and 21 days post infection. In this study, we investigated the mucosal immune response leading to the expulsion of A. suum and the contribution of the hepato-tracheal migration. Self-cure was independent of previous passage through the liver or lungs, as infection with lung stage larvae did not impair self-cure. When animals were infected with 14-day-old intestinal larvae, the larvae were being driven distally in the small intestine around 7 days post infection but by 18 days post infection they re-inhabited the proximal part of the small intestine, indicating that more developed larvae can counter the expulsion mechanism. Self-cure was consistently associated with eosinophilia and intra-epithelial T cells in the jejunum. Furthermore, we identified increased gut movement as a possible mechanism of self-cure as the small intestinal transit time was markedly decreased at the time of expulsion of the worms. Taken together, these results shed new light on the mechanisms of self-cure that occur during A. suum infections
PPARα downregulates airway inflammation induced by lipopolysaccharide in the mouse
BACKGROUND: Inflammation is a hallmark of acute lung injury and chronic airway diseases. In chronic airway diseases, it is associated with profound tissue remodeling. Peroxisome proliferator-activated receptor-α (PPARα) is a ligand-activated transcription factor, that belongs to the nuclear receptor family. Agonists for PPARα have been recently shown to reduce lipopolysaccharide (LPS)- and cytokine-induced secretion of matrix metalloproteinase-9 (MMP-9) in human monocytes and rat mesangial cells, suggesting that PPARα may play a beneficial role in inflammation and tissue remodeling. METHODS: We have investigated the role of PPARα in a mouse model of LPS-induced airway inflammation characterized by neutrophil and macrophage infiltration, by production of the chemoattractants, tumor necrosis factor-α (TNF-α), keratinocyte derived-chemokine (KC), macrophage inflammatory protein-2 (MIP-2) and monocyte chemoattractant protein-1 (MCP-1), and by increased MMP-2 and MMP-9 activity in bronchoalveolar lavage fluid (BALF). The role of PPARα in this model was studied using both PPARα-deficient mice and mice treated with the PPARα activator, fenofibrate. RESULTS: Upon intranasal exposure to LPS, PPARα(-/- )mice exhibited greater neutrophil and macrophage number in BALF, as well as increased levels of TNF-α, KC, MIP-2 and MCP-1, when compared to PPARα(+/+ )mice. PPARα(-/- )mice also displayed enhanced MMP-9 activity. Conversely, fenofibrate (0.15 to 15 mg/day) dose-dependently reduced the increase in neutrophil and macrophage number induced by LPS in wild-type mice. In animals treated with 15 mg/day fenofibrate, this effect was associated with a reduction in TNF-α, KC, MIP-2 and MCP-1 levels, as well as in MMP-2 and MMP-9 activity. PPARα(-/- )mice treated with 15 mg/day fenofibrate failed to exhibit decreased airway inflammatory cell infiltrate, demonstrating that PPARα mediates the anti-inflammatory effect of fenofibrate. CONCLUSION: Using both genetic and pharmacological approaches, our data clearly show that PPARα downregulates cell infiltration, chemoattractant production and enhanced MMP activity triggered by LPS in mouse lung. This suggests that PPARα activation may have a beneficial effect in acute or chronic inflammatory airway disorders involving neutrophils and macrophages
Recommended from our members
Anthelmintic activity of trans-cinnamaldehyde and A- and B-type proanthocyanidins derived from cinnamon (Cinnamomum verum)
Cinnamon (Cinnamomum verum) has been shown to have anti-inflammatory and antimicrobial properties, but effects on parasitic worms of the intestine have not been investigated. Here, extracts of cinnamon bark were shown to have potent in vitro anthelmintic properties against the swine nematode Ascaris suum. Analysis of the extract revealed high concentrations of proanthocyanidins (PAC) and trans-cinnamaldehyde (CA). The PAC were subjected to thiolysis and HPLC-MS analysis which demonstrated that they were exclusively procyanidins, had a mean degree of polymerization of 5.2 and 21% of their inter-flavan-3-ol links were A-type linkages. Purification of the PAC revealed that whilst they had activity against A. suum, most of the potency of the extract derived from CA. Trichuris suis and Oesophagostomum dentatum larvae were similarly susceptible to CA. To test whether CA could reduce A. suum infection in pigs in vivo, CA was administered daily in the diet or as a targeted, encapsulated dose. However, infection was not significantly reduced. It is proposed that the rapid absorption or metabolism of CA in vivo may prevent it from being present in sufficient concentrations in situ to exert efficacy. Therefore, further work should focus on whether formulation of CA can enhance its activity against internal parasites
Direct Visualization of Protease Action on Collagen Triple Helical Structure
Enzymatic processing of extracellular matrix (ECM) macromolecules by matrix metalloproteases (MMPs) is crucial in mediating physiological and pathological cell processes. However, the molecular mechanisms leading to effective physiological enzyme-ECM interactions remain elusive. Only scant information is available on the mode by which matrix proteases degrade ECM substrates. An example is the enzymatic degradation of triple helical collagen II fragments, generated by the collagenase MMP-8 cleavage, during the course of acute inflammatory conditions by gelatinase B/MMP-9. As is the case for many other matrix proteases, it is not clear how MMP-9 recognizes, binds and digests collagen in this important physiological process. We used single molecule imaging to directly visualize this protease during its interaction with collagen fragments. We show that the initial binding is mediated by the diffusion of the protease along the ordered helix on the collagen Âľ fragment, with preferential binding of the collagen tail. As the reaction progressed and prior to collagen degradation, gelatin-like morphologies resulting from the denaturation of the triple helical collagen were observed. Remarkably, this activity was independent of enzyme proteolysis and was accompanied by significant conformational changes of the working protease. Here we provide the first direct visualization of highly complex mechanisms of macromolecular interactions governing the enzymatic processing of ECM substrates by physiological protease
Deep Neural Network Attribution Methods for Leakage Analysis and Symmetric Key Recovery
Deep Neural Networks (DNNs) have recently received significant attention
in the side-channel community due to their state-of-the-art
performance in security testing of embedded systems. However,
research on the subject mostly focused on techniques to improve the
attack efficiency in terms of the number of traces required to extract secret
parameters. What has not been investigated in detail is a constructive
approach of DNNs as a tool to evaluate and improve the effectiveness
of countermeasures against side-channel attacks. In this work, we try to
close this gap by applying attribution methods that aim for interpreting
DNN decisions, in order to identify leaking operations in cryptographic
implementations. In particular, we investigate three different approaches
that have been proposed for feature visualization in image classification
tasks and compare them regarding their suitability to reveal Points of
Interests (POIs) in side-channel traces. We show by experiments with
three separate data sets that Layer-wise Relevance Propagation (LRP)
proposed by Bach et al. provides the best result in most cases. Finally, we
demonstrate that attribution can also serve as a powerful side-channel
distinguisher in DNN-based attack setups
In Vitro Downregulation of Matrix Metalloproteinase-9 in Rat Glial Cells by CCR5 Antagonist Maraviroc: Therapeutic Implication for HIV Brain Infection
BACKGROUND: Matrix metalloproteinases (MMPs) released by glial cells are important mediators of neuroinflammation and neurologic damage in HIV infection. The use of antiretroviral drugs able to combat the detrimental effect of chronic inflammation and target the exaggerated MMP activity might represent an attractive therapeutic challenge. Recent studies suggest that CCR5 antagonist maraviroc (MVC) exerts immunomodulant and anti-inflammatory activity beyond its anti-HIV properties. We investigated the in vitro effect of MVC on the activity of MMPs in astrocyte and microglia cultures.
METHODOLOGY/PRINCIPAL FINDINGS: Primary cultures of rat astrocytes and microglia were activated by exposure to phorbol myristate acetate (PMA) or lypopolysaccharide (LPS) and treated in vitro with MVC. Culture supernatants were subjected to gelatin zymography and quantitative determination of MMP-9 and MMP-2 was done by computerized scanning densitometry. MMP-9 levels were significantly elevated in culture supernatants from both LPS- and PMA-activated astrocytes and microglia in comparison to controls. The treatment with MVC significantly inhibited in a dose-dependent manner the levels and expression of MMP-9 in PMA-activated astrocytes (p<0,05) and, to a lesser extent, in PMA-activated microglia. By contrast, levels of MMP-2 did not significantly change, although a tendency to decrease was seen in PMA-activated astrocytes after treatment with MVC. The inhibition of levels and expression of MMP-9 in PMA-activated glial cells did not depend on cytotoxic effects of MVC. No inhibition of MMP-9 and MMP-2 were found in both LPS-activated astrocytes and microglia.
CONCLUSIONS: The present in vitro study suggests that CCR5 antagonist compounds, through their ability to inhibit MMP-9 expression and levels, might have a great potential for the treatment of HIV-associated neurologic damage
Aggressive dominance can decrease behavioral complexity on subordinates through synchronization of locomotor activities
Social environments are known to influence behavior. Moreover, within small social groups, dominant/subordinate relationships frequently emerge. Dominants can display aggressive behaviors towards subordinates and sustain priority access to resources. Herein, Japanese quail (Coturnix japonica) were used, given that they establish hierarchies through frequent aggressive interactions. We apply a combination of different mathematical tools to provide a precise quantification of the effect of social environments and the consequence of dominance at an individual level on the temporal dynamics of behavior. Main results show that subordinates performed locomotion dynamics with stronger long-range positive correlations in comparison to birds that receive few or no aggressions from conspecifics (more random dynamics). Dominant birds and their subordinates also showed a high level of synchronization in the locomotor pattern, likely emerging from the lack of environmental opportunities to engage in independent behavior. Findings suggest that dominance can potentially modulate behavioral dynamics through synchronization of locomotor activities.publishedVersionAlcala, Rocio. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas, FĂsicas y Naturales; Argentina.Caliva, Jorge MartĂn. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas, FĂsicas y Naturales; Argentina.Caliva, Jorge Martin. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Instituto de Investigaciones BiolĂłgicas y TecnolĂłgicas; Argentina.Flesia, Ana Georgina. Facultad de Matemática, AstronomĂa, FĂsica y ComputaciĂłn; Argentina.Flesia, Ana Georgina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro de InvestigaciĂłn y Estudios de Matemática; Argentina.Marin, RaĂşl Hector. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas, FĂsicas y Naturales; Argentina.Marin, RaĂşl Hector. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Instituto de Investigaciones BiolĂłgicas y TecnolĂłgicas; Argentina.Kembro, Jackelyn Melissa. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas, FĂsicas y Naturales; Argentina.Kembro, Jackelyn Melissa. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Instituto de Investigaciones BiolĂłgicas y TecnolĂłgicas; Argentina
- …