661 research outputs found

    Calamintha incana (Sm.) Helder: A New Phytoextract with In Vitro Antioxidant and Antidiabetic Action

    Get PDF
    This study aimed to assess the antioxidant and antidiabetic properties of ethanolic phytoextracts of Calamintha incana (Sm.) Helder leaves. Initially, the chemical characterization of the phytocomplex was performed using high-performance liquid chromatography (HPLC)/mass spectrometry (MS). The cytotoxicity of the ethanolic extract was assessed using an MTT assay in HepG2 cells. Subsequently, antioxidant activity was evaluated using a DPPH test. Finally, enzymatic tests with alpha-amylase, alpha-glucosidase, pancreatic lipase, and dipeptidyl peptidase IV (DPP-IV) were performed to evaluate their effects on glucose metabolism. The chemical composition of the extract is p-linolenic acid (13.2%), myristic acid (12.1%), and p-cymene (10.5%). The extract demonstrated low toxicity, with none of the tested concentrations inducing 50% cell death. Furthermore, the ethanolic extract revealed potent antioxidant activity using DPPH (IC50 was 35.9 +/- 0.7 mu g/mL) and reducing power capacity (IC50 was 90.3 +/- 0.8 mu g/mL). Regarding the antidiabetic activity, the extract caused a significant inhibition of alpha-amylase, alpha-glucosidase (IC50 46.3 +/- 0.2, 56.8 +/- 0.1 mu g/mL, respectively), weak inhibition of pancreatic lipase and no notable inhibition of dipeptidyl peptidase IV. In conclusion, C. incana has antioxidant and antidiabetic properties and appears to exert insulin-independent hypoglycemic action

    Nanoparticles Based-Plant Protein Containing Rosmarinus officinalis Essential Oil; Fabrication, Characterization, and Evaluation

    Get PDF
    The toxicity risks, instability of essential oil, and complex composition are principal obstacles to using essential plant oil for clinical applications. Solving stability-related problems, providing targeted drug delivery, and decreasing plant essential oil toxicity, encapsulation can be used successfully. Rosemary (Rosmarinus officinalis) is a perennial plant of the Lamiaceae family with various healing properties. However, the rosemary essential oil, as volatile oil, is fast evaporated, which limits its applications. This study’s goal is to boost the prevent evaporation and bioactivity of rosemary essential oil by developing zein-NPs as a promising NDS (nano-drug-delivery system) and assessing the effect of NPs on the rosemary essential oil efficacy. Scanning electron microscopy (SEM) showed NPs sizes between 70–200 nm. With dynamic light scattering analysis (DLS), the average size of zein nanoparticle-containing rosemary essential oil (NPZLA) was obtained at ca. 154.5 nm. The entrapment efficiency (EE) on rosemary essential oil was ca. 71% inside the zein NPs. The in vitro release suggests that the polymeric barrier can control the rosemary essential oil release. Zein-NPs can be potentially used as NC (nanocarrier) for enhancing the evaporation inhibitor of ether oil of rosemary essential oil to enhance its bioavailability and performance further. It can be concluded that rosemary plant can be used as the core inside the nanoparticle by biological production method due to its medicinal properties and other properties. Based on the stated content, it is clear that in the future, by conducting more extensive research, the necessary platform can be provided for the use of this medicinal plant as much as possible in the pharmaceutical industry

    Isotopic Composition of Fragments in Nuclear Multifragmentation

    Full text link
    The isotope yields of fragments, produced in the decay of the quasiprojectile in Au+Au peripheral collisions at 35 MeV/nucleon and those coming from the disassembly of the unique source formed in Xe+Cu central reactions at 30 MeV/nucleon, were measured. We show that the relative yields of neutron-rich isotopes increase with the excitation energy in multifragmentation reaction. In the framework of the statistical multifragmentation model which fairly well reproduces the experimental observables, this behaviour can be explained by increasing N/Z ratio of hot primary fragments, that corresponds to the statistical evolution of the decay mechanism with the excitation energy: from a compound-like decay to complete multifragmentation.Comment: 10 pages. 4 Postscript figures. Submitted to Physical Review C, Rapid Communicatio

    Patterned Stimulation of Peripheral Nerves Produces Natural Sensations with Regards to Location but Not Quality

    Get PDF
    Sensory feedback is crucial for dexterous manipulation and sense of ownership. Electrical stimulation of severed afferent fibers due to an amputation elicits referred sensations in the missing limb. However, these sensations are commonly reported with a concurrent 'electric' or 'tingling' character (paresthesia). In this paper, we examined the effect of modulating different pulse parameters on the quality of perceived sensations. Three subjects with above-elbow amputation were implanted with cuff electrodes and stimulated with a train of pulses modulated in either amplitude, width, or frequency ('patterned stimulation'). Pulses were shaped using a slower carrier wave or via quasi-random generation. Subjects were asked to evaluate the natural quality of the resulting sensations using a numeric rating scale. We found that the location of the percepts was distally referred and somatotopically congruent, but their quality remained largely perceived as artificial despite employing patterned modulation. Sensations perceived as arising from the missing limb are intuitive and natural with respect to their location and, therefore, useful for functional restoration. However, our results indicate that sensory transformation from paresthesia to natural qualia seems to require more than patterned stimulation

    Investigation on the Essential Oils of the Achillea Species: From Chemical Analysis to the In Silico Uptake against SARS-CoV-2 Main Protease

    Get PDF
    In this study, phytochemicals extracted from three different Achillea genera were identified and analyzed to be screened for their interactions with the SARS-CoV-2 main protease. In particular, the antiviral potential of these natural products against the SARS-CoV-2 main protease was investigated, as was their effectiveness against the SARS-CoV-1 main protease as a standard (due to its high similarity with SARS-CoV-2). These enzymes play key roles in the proliferation of viral strains in the human cytological domain. GC-MS analysis was used to identify the essential oils of the Achillea species. Chemi-informatics tools, such as AutoDock 4.2.6, SwissADME, ProTox-II, and LigPlot, were used to investigate the action of the pharmacoactive compounds against the main proteases of SARS-CoV-1 and SARS-CoV-2. Based on the binding energies of kessanyl acetate, chavibetol (m-eugenol), farnesol, and 7-epi-beta-eudesmol were localized at the active site of the coronaviruses. Furthermore, these molecules, through hydrogen bonding with the amino acid residues of the active sites of viral proteins, were found to block the progression of SARS-CoV-2. Screening and computer analysis provided us with the opportunity to consider these molecules for further preclinical studies. Furthermore, considering their low toxicity, the data may pave the way for new in vitro and in vivo research on these natural inhibitors of the main SARS-CoV-2 protease

    A new study of 25^{25}Mg(α\alpha,n)28^{28}Si angular distributions at EαE_\alpha = 3 - 5 MeV

    Full text link
    The observation of 26^{26}Al gives us the proof of active nucleosynthesis in the Milky Way. However the identification of the main producers of 26^{26}Al is still a matter of debate. Many sites have been proposed, but our poor knowledge of the nuclear processes involved introduces high uncertainties. In particular, the limited accuracy on the 25^{25}Mg(α\alpha,n)28^{28}Si reaction cross section has been identified as the main source of nuclear uncertainty in the production of 26^{26}Al in C/Ne explosive burning in massive stars, which has been suggested to be the main source of 26^{26}Al in the Galaxy. We studied this reaction through neutron spectroscopy at the CN Van de Graaff accelerator of the Legnaro National Laboratories. Thanks to this technique we are able to discriminate the (α\alpha,n) events from possible contamination arising from parasitic reactions. In particular, we measured the neutron angular distributions at 5 different beam energies (between 3 and 5 MeV) in the \ang{17.5}-\ang{106} laboratory system angular range. The presented results disagree with the assumptions introduced in the analysis of a previous experiment.Comment: 9 pages, 9 figures - accepted by EPJ

    Changes of taste, smell and eating behavior in patients undergoing bariatric surgery: Associations with prop phenotypes and polymorphisms in the odorant-binding protein OBPIIa and CD36 receptor genes

    Get PDF
    Bariatric surgery is the most effective long-term treatment for severe obesity and related comorbidities. Although patients who underwent bariatric surgery report changes of taste and smell perception, results from sensory studies are discrepant and limited. Here, we assessed taste and smell functions in 51 patients before, one month, and six months after undergoing bariatric surgery. We used taste strip tests to assess gustatory function (including sweetness, saltiness, sourness, uma-miness, bitterness and oleic acid, a fatty stimulus), the “Sniffin’ Sticks” test to assess olfactory identification and the 3-Factor Eating Questionnaire to assess eating behavior. We also explored associations between these phenotypes and flavor-related genes. Results showed an overall improvement in taste function (including increased sensitivity to oleic acid and the bitterness of 6-n-propylthiou-racil (PROP)) and in olfactory function (which could be related to the increase in PROP and oleic acid sensitivity), an increase in cognitive restraint, and a decrease in disinhibition and hunger after bariatric surgery. These findings indicate that bariatric surgery can have a positive impact on olfactory and gustatory functions and eating behavior (with an important role of genetic factors, such PROP tasting), which in turn might contribute to the success of the intervention

    Impact of Silicon Foliar Application on the Growth and Physiological Traits of Carthamus tinctorius L. Exposed to Salt Stress

    Get PDF
    Althought safflower is a tolerant crop against many environmental stresses, but its yield and performance reduce under stress. The aim of this experiment was to investigate the effect of silicon (Si) application on the possibility of increasing salinity resistance and related mechanisms in safflower. A greenhouse experiment was conducted to investigate the effects of Si spraying (0, 1.5 and 2.5 mM) on safflower plants grown under salt stress condition (non-saline and 10 dS m−1). Salinity reduced seedling emergence percent and rate, growth parameters and disrupted ion uptake but increased emergence time and specifc leaf weight. Spraying of Si increased plant height, fresh and dry weight, leaf area, relative water content (RWC), potassium, calcium and silicon content, while sodium absorption was decreased. As a result, the K+/Na+ and Ca2+/Na+ ratios were increased. Elevated ion contents and ratios indicate an enhanced selectivity of ion uptake following silicon application and may increase ion discrimination against Na+. Treatment with 2.5 mM Si showed the most positive effect on the measured growth traits. Decrement in leaf area ratio under salinity indicates a more severe effect of salinity on leaf area compared to biomass production. On the other hand, silicon reduced the specific leaf weight under stress and non-stress conditions, which revalues the positive effects of silicon on leaf area expansion. Improvement of RWC may a reason for the icrease in leaf area and biomass production. Data shows that spraying with Si especialy with 2.5 mM can reduce salinity stress damage to safflower and increase biomass production

    Size and asymmetry of the reaction entrance channel: influence on the probability of neck production

    Full text link
    The results of experiments performed to investigate the Ni+Al, Ni+Ni, Ni+Ag reactions at 30 MeV/nucleon are presented. From the study of dissipative midperipheral collisions, it has been possible to detect events in which Intermediate Mass Fragments (IMF) production takes place. The decay of a quasi-projectile has been identified; its excitation energy leads to a multifragmentation totally described in terms of a statistical disassembly of a thermalized system (T\simeq4 MeV, E^*\simeq4 MeV/nucleon). Moreover, for the systems Ni+Ni, Ni+Ag, in the same nuclear reaction, a source with velocity intermediate between that of the quasi-projectile and that of the quasi-target, emitting IMF, is observed. The fragments produced by this source are more neutron rich than the average matter of the overall system, and have a charge distribution different, with respect to those statistically emitted from the quasi-projectile. The above features can be considered as a signature of the dynamical origin of the midvelocity emission. The results of this analysis show that IMF can be produced via different mechanisms simultaneously present within the same collision. Moreover, once fixed the characteristics of the quasi-projectile in the three considered reactions (in size, excitation energy and temperature), one observes that the probability of a partner IMF production via dynamical mechanism has a threshold (not present in the Ni+Al case) and increases with the size of the target nucleus.Comment: 16 pages, 7 figures, accepted for publication on Nuclear Physics

    Contemporary presence of dynamical and statistical production of intermediate mass fragments in midperipheral 58^{58}Ni+58^{58}Ni collisions at 30 MeV/nucleon

    Full text link
    The 58Ni+58Ni^{58}Ni+^{58}Ni reaction at 30 MeV/nucleon has been experimentally investigated at the Superconducting Cyclotron of the INFN Laboratori Nazionali del Sud. In midperipheral collisions the production of massive fragments (4\leZ\le12), consistent with the statistical fragmentation of the projectile-like residue and the dynamical formation of a neck, joining projectile-like and target-like residues, has been observed. The fragments coming from these different processes differ both in charge distribution and isotopic composition. In particular it is shown that these mechanisms leading to fragment production act contemporarily inside the same event.Comment: 9 pages, minor correction
    corecore