201 research outputs found

    A geometric comparison of aerofoil shape parameterisation methods

    Get PDF

    Can a management pathway for chronic cough in children improve clinical outcomes: protocol for a multicentre evaluation

    Get PDF
    Background: Chronic cough is common and is associated with significant economic and human costs. While cough can be a problematic symptom without serious consequences, it could also reflect a serious underlying illness. Evidence shows that the management of chronic cough in children needs to be improved. Our study tests the hypothesis that the management of chronic cough in children with an evidence-based management pathway is feasible and reliable, and improves clinical outcomes

    Comparing amyloid-β plaque burden with antemortem PiB PET in autosomal dominant and late-onset Alzheimer disease

    Get PDF
    Pittsburgh compound B (PiB) radiotracer for positron emission tomography (PET) imaging can bind to different types of amyloid-β plaques and blood vessels (cerebral amyloid angiopathy). However, the relative contributions of different plaque subtypes (diffuse versus cored/compact) to in vivo PiB PET signal on a region-by-region basis is incompletely understood. Of particular interest is whether the same staging schemes for summarizing amyloid-β burden are appropriate for both late-onset and autosomal dominant forms of Alzheimer disease (LOAD and ADAD). Here we compared antemortem PiB PET with follow-up postmortem estimation of amyloid-β burden using stereologic methods to estimate the relative area fraction of diffuse and cored/compact amyloid-β plaques across 16 brain regions in 15 individuals with ADAD and 14 individuals with LOAD. In ADAD, we found that PiB PET correlated with diffuse plaques in the frontal, parietal, temporal, and striatal regions commonly used to summarize amyloid-β burden in PiB PET, and correlated with both diffuse and cored/compact plaques in the occipital lobe and parahippocampal gyrus. In LOAD, we found that PiB PET correlated with both diffuse and cored/compact plaques in the anterior cingulate, frontal lobe (middle frontal gyrus), and parietal lobe, and showed additional correlations with diffuse plaque in the amygdala and occipital lobe, and with cored/compact plaque in the temporal lobe. Thus, commonly used PiB PET summary regions predominantly reflect diffuse plaque burden in ADAD and a mixture of diffuse and cored/compact plaque burden in LOAD. In direct comparisons of ADAD and LOAD, postmortem stereology identified much greater mean amyloid-β plaque burdens in ADAD versus LOAD across almost all brain regions studied. However, standard PiB PET did not recapitulate these stereologic findings, likely due to non-trivial amyloid-β plaque burdens in ADAD within the cerebellum and brainstem – commonly used reference regions in PiB PET. Our findings suggest that PiB PET summary regions correlate with amyloid-β plaque burden in both ADAD and LOAD; however, they might not be reliable in direct comparisons of regional amyloid-β plaque burden between the two forms of AD

    ACL injury prevention, more effective with a different way of motor learning?

    Get PDF
    What happens to the transference of learning proper jump-landing technique in isolation when an individual is expected to perform at a competitive level yet tries to maintain proper jump-landing technique? This is the key question for researchers, physical therapists, athletic trainers and coaches involved in ACL injury prevention in athletes. The need for ACL injury prevention is clear, however, in spite of these ongoing initiatives and reported early successes, ACL injury rates and the associated gender disparity have not diminished. One problem could be the difficulties with the measurements of injury rates and the difficulties with the implementation of thorough large scale injury prevention programs. A second issue could be the transition from conscious awareness during training sessions on technique in the laboratory to unexpected and automatic movements during a training or game involves complicated motor control adaptations. The purpose of this paper is to highlight the issue of motor learning in relation to ACL injury prevention and to post suggestions for future research. ACL injury prevention programs addressing explicit rules regarding desired landing positions by emphasizing proper alignment of the hip, knee, and ankle are reported in the literature. This may very well be a sensible way, but the use of explicit strategies may be less suitable for the acquisition of the control of complex motor skills (Maxwell et al. J Sports Sci 18:111-120, 2000). Sufficient literature on motor learning and it variations point in that direction

    Contrasting Micro/Nano Architecture on Termite Wings: Two Divergent Strategies for Optimising Success of Colonisation Flights

    Get PDF
    Many termite species typically fly during or shortly after rain periods. Local precipitation will ensure water will be present when establishing a new colony after the initial flight. Here we show how different species of termite utilise two distinct and contrasting strategies for optimising the success of the colonisation flight. Nasutitermes sp. and Microcerotermes sp. fly during rain periods and adopt hydrophobic structuring/‘technologies’ on their wings to contend with a moving canvas of droplets in daylight hours. Schedorhinotermes sp. fly after rain periods (typically at night) and thus do not come into contact with mobile droplets. These termites, in contrast, display hydrophilic structuring on their wings with a small scale roughness which is not dimensionally sufficient to introduce an increase in hydrophobicity. The lack of hydrophobicity allows the termite to be hydrophilicly captured at locations where water may be present in large quantities; sufficient for the initial colonization period. The high wettability of the termite cuticle (Schedorhinotermes sp.) indicates that the membrane has a high surface energy and thus will also have strong attractions with solid particles. To investigate this the termite wings were also interacted with both artificial and natural contaminants in the form of hydrophilic silicon beads of various sizes, 4 µm C18 beads and three differently structured pollens. These were compared to the superhydrophobic surface of the planthopper (Desudaba psittacus) and a native Si wafer surface. The termite cuticle demonstrated higher adhesive interactions with all particles in comparison to those measured on the plant hopper

    Electron acceleration by wave turbulence in a magnetized plasma

    Get PDF
    Astrophysical shocks are commonly revealed by the non-thermal emission of energetic electrons accelerated in situ 1-3 . Strong shocks are expected to accelerate particles to very high energies 4-6 ; however, they require a source of particles with velocities fast enough to permit multiple shock crossings. While the resulting diffusive shock acceleration 4 process can account for observations, the kinetic physics regulating the continuous injection of non-thermal particles is not well understood. Indeed, this injection problem is particularly acute for electrons, which rely on high-frequency plasma fluctuations to raise them above the thermal pool 7,8 . Here we show, using laboratory laser-produced shock experiments, that, in the presence of a strong magnetic field, significant electron pre-heating is achieved. We demonstrate that the key mechanism in producing these energetic electrons is through the generation of lower-hybrid turbulence via shock-reflected ions. Our experimental results are analogous to many astrophysical systems, including the interaction of a comet with the solar wind 9 , a setting where electron acceleration via lower-hybrid waves is possible

    The Portuguese Rheumatoid Arthritis Impact of Disease (RAID) score and its measurement equivalence in three countries: validation study using Rasch Models

    Get PDF
    © 2018, The Author(s). Purpose: The Rheumatoid Arthritis Impact of Disease (RAID) score assesses seven impact domains of interest for people with RA. This study aimed to test patients’ understanding of the Portuguese RAID and evaluate its cross-cultural validity for use in Portugal. Methods: This was a mixed methods study comprising two phases: (i) cognitive debriefing to determine patient’s comprehension of the Portuguese RAID and (ii) cross-cultural validation using Rasch analysis. Construct validity was determined by fit to the model, invariance culture (compared with France and UK datasets) and evidence of convergent and divergent validity. Results: Patients’ input (n = 38) led to minor changes in the phrasing of two items to ensure conceptual equivalence between the Portuguese and the original RAID. In Rasch analysis (n = 288), two items ‘Sleep’ and ‘Physical well-being’ in the Portuguese dataset did not adequately fit the model specifications, suggesting multidimensionality (sleep—not necessarily associated with RA) and redundancy (physical well-being overlapping with functional disability). Despite the imperfections, the scale had high internal consistency, evidence of convergent and divergent validity and invariance to culture (compared to France n = 195 and UK n = 205 datasets). The scale was well targeted for patients with different levels of disease impact. Conclusions: The RAID has been successfully adapted into Portuguese and it can be used with confidence in clinical practice. Further research will be required to ensure it captures the full range of sleep problems in RA. Meanwhile, data across the three countries (Portugal, France and the UK) are comparable except for the two items (sleep and physical well-being)

    Risk prediction of late-onset Alzheimer’s disease implies an oligogenic architecture

    Get PDF
    Genetic association studies have identified 44 common genome-wide significant risk loci for late-onset Alzheimer's disease (LOAD). However, LOAD genetic architecture and prediction are unclear. Here we estimate the optimal P-threshold (P) of a genetic risk score (GRS) for prediction of LOAD in three independent datasets comprising 676 cases and 35,675 family history proxy cases. We show that the discriminative ability of GRS in LOAD prediction is maximised when selecting a small number of SNPs. Both simulation results and direct estimation indicate that the number of causal common SNPs for LOAD may be less than 100, suggesting LOAD is more oligogenic than polygenic. The best GRS explains approximately 75% of SNP-heritability, and individuals in the top decile of GRS have ten-fold increased odds when compared to those in the bottom decile. In addition, 14 variants are identified that contribute to both LOAD risk and age at onset of LOAD

    An initial application of computerized adaptive testing (CAT) for measuring disability in patients with low back pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent approaches to outcome measurement involving Computerized Adaptive Testing (CAT) offer an approach for measuring disability in low back pain (LBP) in a way that can reduce the burden upon patient and professional. The aim of this study was to explore the potential of CAT in LBP for measuring disability as defined in the International Classification of Functioning, Disability and Health (ICF) which includes impairments, activity limitation, and participation restriction.</p> <p>Methods</p> <p>266 patients with low back pain answered questions from a range of widely used questionnaires. An exploratory factor analysis (EFA) was used to identify disability dimensions which were then subjected to Rasch analysis. Reliability was tested by internal consistency and person separation index (PSI). Discriminant validity of disability levels were evaluated by Spearman correlation coefficient (r), intraclass correlation coefficient [ICC(2,1)] and the Bland-Altman approach. A CAT was developed for each dimension, and the results checked against simulated and real applications from a further 133 patients.</p> <p>Results</p> <p>Factor analytic techniques identified two dimensions named "body functions" and "activity-participation". After deletion of some items for failure to fit the Rasch model, the remaining items were mostly free of Differential Item Functioning (DIF) for age and gender. Reliability exceeded 0.90 for both dimensions. The disability levels generated using all items and those obtained from the real CAT application were highly correlated (i.e. > 0.97 for both dimensions). On average, 19 and 14 items were needed to estimate the precise disability levels using the initial CAT for the first and second dimension. However, a marginal increase in the standard error of the estimate across successive iterations substantially reduced the number of items required to make an estimate.</p> <p>Conclusion</p> <p>Using a combination approach of EFA and Rasch analysis this study has shown that it is possible to calibrate items onto a single metric in a way that can be used to provide the basis of a CAT application. Thus there is an opportunity to obtain a wide variety of information to evaluate the biopsychosocial model in its more complex forms, without necessarily increasing the burden of information collection for patients.</p
    corecore