143 research outputs found

    Genetic Variants of Ehrlichia phagocytophila1, Rhode Island and Connecticut

    Get PDF
    Primers were used to amplify a 561-bp region of the 16S rRNA gene of Ehrlichia phagocytophila from Ixodes scapularis ticks and small mammals collected in Rhode Island and Connecticut. DNA sequences for all 50 E. phagocytophila-positive samples collected from 1996 through 1998 in southwestern Connecticut were identical to the sequence reported for E. phagocytophila DNA from confirmed human cases. In contrast, the sequences from 92 of 123 E. phagocytophila-positive Rhode Island samples collected from 1996 through 1999 included several variants differing by 1-2 nucleotides from that in the agent infecting humans. While 11.9% of 67 E. phagocytophila-positive ticks collected during 1997 in Rhode Island harbored ehrlichiae with sequences identical to that of the human agent, 79.1% had a variant sequence not previously described. The low incidence of human ehrlichiosis in Rhode Island may in part result from interference by these variant ehrlichiae with maintenance and transmission of the true agent of human disease

    Rapid typing of Coxiella burnetii

    Get PDF
    Coxiella burnetii has the potential to cause serious disease and is highly prevalent in the environment. Despite this, epidemiological data are sparse and isolate collections are typically small, rare, and difficult to share among laboratories as this pathogen is governed by select agent rules and fastidious to culture. With the advent of whole genome sequencing, some of this knowledge gap has been overcome by the development of genotyping schemes, however many of these methods are cumbersome and not readily transferable between institutions. As comparisons of the few existing collections can dramatically increase our knowledge of the evolution and phylogeography of the species, we aimed to facilitate such comparisons by extracting SNP signatures from past genotyping efforts and then incorporated these signatures into assays that quickly and easily define genotypes and phylogenetic groups. We found 91 polymorphisms (SNPs and indels) among multispacer sequence typing (MST) loci and designed 14 SNP-based assays that could be used to type samples based on previously established phylogenetic groups. These assays are rapid, inexpensive, real-time PCR assays whose results are unambiguous. Data from these assays allowed us to assign 43 previously untyped isolates to established genotypes and genomic groups. Furthermore, genotyping results based on assays from the signatures provided here are easily transferred between institutions, readily interpreted phylogenetically and simple to adapt to new genotyping technologies

    Genetic variants of Anaplasma phagocytophilum from 14 equine granulocytic anaplasmosis cases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Equine Granulocytic Anaplasmosis (EGA) is caused by <it>Anaplasma phagocytophilum</it>, a tick-transmitted, obligate intracellular bacterium. In Europe, it is transmitted by <it>Ixodes ricinus</it>. A large number of genetic variants of <it>A. phagocytophilum </it>circulate in nature and have been found in ticks and different animals. Attempts have been made to assign certain genetic variants to certain host species or pathologies, but have not been successful so far. The purpose of this study was to investigate the causing agent <it>A. phagocytophilum </it>of 14 cases of EGA in naturally infected horses with molecular methods on the basis of 4 partial genes (<it>16S rRNA</it>, <it>groEL</it>, <it>msp2</it>, and <it>msp4</it>).</p> <p>Results</p> <p>All DNA extracts of EDTA-blood samples of the horses gave bands of the correct nucleotide size in all four genotyping PCRs. Sequence analysis revealed 4 different variants in the partial <it>16S rRNA</it>, <it>groEL </it>gene and <it>msp2 </it>genes, and 3 in the <it>msp4 </it>gene. One <it>16S rRNA </it>gene variant involved in 11 of the 14 cases was identical to the "prototype" variant causing disease in humans in the amplified part [GenBank: <ext-link ext-link-id="U02521" ext-link-type="gen">U02521</ext-link>]. Phylogenetic analysis revealed as expected for the <it>groEL </it>gene that sequences from horses clustered separately from roe deer. Sequences of the partial <it>msp2 </it>gene from this study formed a separate cluster from ruminant variants in Europe and from all US variants.</p> <p>Conclusions</p> <p>The results show that more than one variant of <it>A. phagocytophilum </it>seems to be involved in EGA in Germany. The comparative genetic analysis of the variants involved points towards different natural cycles in the epidemiology of <it>A. phagocytophilum</it>, possibly involving different reservoir hosts or host adaptation, rather than a strict species separation.</p

    Diverse tick-borne microorganisms identified in free-living ungulates in Slovakia

    Get PDF
    Background: Free-living ungulates are hosts of ixodid ticks and reservoirs of tick-borne microorganisms in central Europe and many regions around the world. Tissue samples and engorged ticks were obtained from roe deer, red deer, fallow deer, mouflon, and wild boar hunted in deciduous forests of south-western Slovakia. DNA isolated from these samples was screened for the presence of tick-borne microorganisms by PCR-based methods. Results: Ticks were found to infest all examined ungulate species. The principal infesting tick was Ixodes ricinus, identified on 90.4% of wildlife, and included all developmental stages. Larvae and nymphs of Haemaphysalis concinna were feeding on 9.6% of wildlife. Two specimens of Dermacentor reticulatus were also identified. Ungulates were positive for A. phagocytophilum and Theileria spp. Anaplasma phagocytophilum was found to infect 96.1% of cervids, 88.9% of mouflon, and 28.2% of wild boar, whereas Theileria spp. was detected only in cervids (94.6%). Importantly, a high rate of cervids (89%) showed mixed infections with both these microorganisms. In addition to A. phagocytophilum and Theileria spp., Rickettsia helvetica, R. monacensis, unidentified Rickettsia sp., Coxiella burnetii, "Candidatus Neoehrlichia mikurensis", Borrelia burgdorferi (s.l.) and Babesia venatorum were identified in engorged I. ricinus. Furthermore, A. phagocytophilum, Babesia spp. and Theileria spp. were detected in engorged H. concinna. Analysis of 16S rRNA and groEL gene sequences revealed the presence of five and two A. phagocytophilum variants, respectively, among which sequences identified in wild boar showed identity to the sequence of the causative agent of human granulocytic anaplasmosis (HGA). Phylogenetic analysis of Theileria 18S rRNA gene sequences amplified from cervids and engorged I. ricinus ticks segregated jointly with sequences of T. capreoli isolates into a moderately supported monophyletic clade. Conclusions: The findings indicate that free-living ungulates are reservoirs for A. phagocytophilum and Theileria spp. and engorged ixodid ticks attached to ungulates are good sentinels for the presence of agents of public and veterinary concern. Further analyses of the A. phagocytophilum genetic variants and Theileria species and their associations with vector ticks and free-living ungulates are required.Fil: Kazimírová, Mária. Slovak Academy of Sciences. Institute of Zoology; EslovaquiaFil: Hamšíková, Zuzana. Slovak Academy of Sciences. Institute of Zoology; EslovaquiaFil: Spitalská, Eva. Slovak Academy of Sciences. Institute of Virology. Biomedical Research Center,; EslovaquiaFil: Minichová, Lenka. Slovak Academy of Sciences. Institute of Virology. Biomedical Research Center,; EslovaquiaFil: Mahríková, Lenka. Slovak Academy of Sciences. Institute of Zoology; EslovaquiaFil: Caban, Radoslav. Široká ; EslovaquiaFil: Sprong, Hein. National Institute for Public Health and Environment.Laboratory for Zoonoses and Environmental Microbiology; Países BajosFil: Fonville, Manoj. National Institute for Public Health and Environment.Laboratory for Zoonoses and Environmental Microbiology; Países BajosFil: Schnittger, Leonhard. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Patobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Kocianová, Elena. Slovak Academy of Sciences. Institute of Virology. Biomedical Research Center,; Eslovaqui

    First report of Anaplasma phagocytophilum and Babesia microtiin rodents in Finland

    Get PDF
    Tick-borne diseases pose an increasingly important public health problem in Europe. Rodents are the reservoir host for many tick-transmitted pathogens, including Anaplasma phagocytophilum and Babesia microti, which can cause human granulocytic anaplasmosis and babesiosis, respectively. To estimate the presence of these pathogens in rodents in Finland, we examined blood samples from 151 bank voles (Myodes glareolus) and demonstrate, for the first time, that A. phagocytophilum and B. microti commonly infect bank voles (in 22% and 40% of animals, respectively) in Finland. Sequence analysis of a fragment of 18S rRNA showed that the B. microti strain isolated was identical to the Munich strain, which is considered to be nonzoonotic. The A. phagocytophilum strain (based on a fragment of the msp4 gene) was identical to one found earlier in rodents in the United Kingdom that is transmitted by the tick Ixodes trianguliceps, all the life stages of which feed on small mammals. The infection probability of B. microti in the bank voles was the greater the older the individual was, and males were more often infected than females. A. phagocytophilum infection probability first increased and then decreased with the age of individual without any difference between sexes. While these pathogens presumably pose a limited zoonotic risk to humans in Finland, they might have important interactions with other rodent pathogens and therefore affect infection dynamics of, for example, zoonotic pathogens

    High prevalence and two dominant host-specific genotypes of Coxiella burnetii in U.S. milk

    Get PDF
    BackgroundCoxiella burnetii causes Q fever in humans and Coxiellosis in animals; symptoms range from general malaise to fever, pneumonia, endocarditis and death. Livestock are a significant source of human infection as they shed C. burnetii cells in birth tissues, milk, urine and feces. Although prevalence of C. burnetii is high, few Q fever cases are reported in the U.S. and we have a limited understanding of their connectedness due to difficulties in genotyping. Here, we develop canonical SNP genotyping assays to evaluate spatial and temporal relationships among C. burnetii environmental samples and compare them across studies. Given the genotypic diversity of historical collections, we hypothesized that the current enzootic of Coxiellosis is caused by multiple circulating genotypes. We collected A) 23 milk samples from a single bovine herd, B) 134 commercial bovine and caprine milk samples from across the U.S., and C) 400 bovine and caprine samples from six milk processing plants over three years.ResultsWe detected C. burnetii DNA in 96% of samples with no variance over time. We genotyped 88.5% of positive samples; bovine milk contained only a single genotype (ST20) and caprine milk was dominated by a second type (mostly ST8).ConclusionsThe high prevalence and lack of genotypic diversity is consistent with a model of rapid spread and persistence. The segregation of genotypes between host species is indicative of species-specific adaptations or dissemination barriers and may offer insights into the relative lack of human cases and characterizing genotypes

    Adipose Tissue Serves as a Reservoir for Recrudescent Rickettsia prowazekii Infection in a Mouse Model

    Get PDF
    Brill-Zinsser disease, the relapsing form of epidemic typhus, typically occurs in a susceptible host years or decades after the primary infection; however, the mechanisms of reactivation and the cellular reservoir during latency are poorly understood. Herein we describe a murine model for Brill-Zinsser disease, and use PCR and cell culture to show transient rickettsemia in mice treated with dexamethasone >3 months after clinical recovery from the primary infection. Treatment of similarly infected mice with cyclosporine failed to produce recrudescent bacteremia. Therapy with doxycycline for the primary infection prevented recrudescent bacteremia in most of these mice following treatment with dexamethasone. Rickettsia prowazekii (the etiologic agent of epidemic typhus) was detected by PCR, cell culture, and immunostaining methods in murine adipose tissue, but not in liver, spleen, lung, or central nervous system tissues of mice 4 months after recovery from the primary infection. The lungs of dexamethasone-treated mice showed impaired expression of β-defensin transcripts that may be involved in the pathogenesis of pulmonary lesions. In vitro, R. prowazekii rickettsiae infected and replicated in the murine adipocyte cell line 3T3-L1. Collectively these data suggest a role for adipose tissue as a potential reservoir for dormant infections with R. prowazekii
    corecore