8,661 research outputs found
Flux rope, hyperbolic flux tube, and late EUV phases in a non-eruptive circular-ribbon flare
We present a detailed study of a confined circular flare dynamics associated
with 3 UV late phases in order to understand more precisely which topological
elements are present and how they constrain the dynamics of the flare. We
perform a non-linear force free field extrapolation of the confined flare
observed with the HMI and AIA instruments onboard SDO. From the 3D magnetic
field we compute the squashing factor and we analyse its distribution.
Conjointly, we analyse the AIA EUV light curves and images in order to identify
the post-flare loops, their temporal and thermal evolution. By combining both
analysis we are able to propose a detailed scenario that explains the dynamics
of the flare. Our topological analysis shows that in addition to a null-point
topology with the fan separatrix, the spine lines and its surrounding
Quasi-Separatix Layers halo (typical for a circular flare), a flux rope and its
hyperbolic flux tube (HFT) are enclosed below the null. By comparing the
magnetic field topology and the EUV post-flare loops we obtain an almost
perfect match 1) between the footpoints of the separatrices and the EUV
1600~\AA{} ribbons and 2) between the HFT's field line footpoints and bright
spots observed inside the circular ribbons. We showed, for the first time in a
confined flare, that magnetic reconnection occured initially at the HFT, below
the flux rope. Reconnection at the null point between the flux rope and the
overlying field is only initiated in a second phase. In addition, we showed
that the EUV late phase observed after the main flare episode are caused by the
cooling loops of different length which have all reconnected at the null point
during the impulsive phase.Comment: Astronomy & Astrophysics, in pres
Courts, care proceedings and outcomes uncertainty: the challenges of achieving and assessing ‘good outcomes’ for children after child protection proceedings
The professed aim of any social welfare or legal intervention in family life is often to bring about ‘better outcomes for the children’. But there is considerable ambiguity about ‘outcomes’, and the term is far too often used in far too simplistic a way. This paper draws on empirical research into the outcomes of care proceedings for a randomly selected sample of 616 children in England and Wales, about half starting proceedings in 2009-10, and the others in 2014-15. The paper considers the challenges of achieving and assessing ‘good outcomes’ for the children. Outcomes are complex and fluid for all children, whatever the court order. One has to assess the progress of the children in the light of their individual needs and in the context of ‘normal’ child development; and in terms of the legal provisions and policy expectations. A core paradox is that some of the most uncertain outcomes are for children who remain with or return to their parents; yet law and policy require that first consideration is given to this option. Greater transparency about the uncertainty of outcomes is a necessary step towards better understanding the risks and potential benefits of care proceedings
Synchronous Behavior of Two Coupled Electronic Neurons
We report on experimental studies of synchronization phenomena in a pair of
analog electronic neurons (ENs). The ENs were designed to reproduce the
observed membrane voltage oscillations of isolated biological neurons from the
stomatogastric ganglion of the California spiny lobster Panulirus interruptus.
The ENs are simple analog circuits which integrate four dimensional
differential equations representing fast and slow subcellular mechanisms that
produce the characteristic regular/chaotic spiking-bursting behavior of these
cells. In this paper we study their dynamical behavior as we couple them in the
same configurations as we have done for their counterpart biological neurons.
The interconnections we use for these neural oscillators are both direct
electrical connections and excitatory and inhibitory chemical connections: each
realized by analog circuitry and suggested by biological examples. We provide
here quantitative evidence that the ENs and the biological neurons behave
similarly when coupled in the same manner. They each display well defined
bifurcations in their mutual synchronization and regularization. We report
briefly on an experiment on coupled biological neurons and four dimensional ENs
which provides further ground for testing the validity of our numerical and
electronic models of individual neural behavior. Our experiments as a whole
present interesting new examples of regularization and synchronization in
coupled nonlinear oscillators.Comment: 26 pages, 10 figure
Noncommutative Induced Gauge Theories on Moyal Spaces
Noncommutative field theories on Moyal spaces can be conveniently handled
within a framework of noncommutative geometry. Several renormalisable matter
field theories that are now identified are briefly reviewed. The construction
of renormalisable gauge theories on these noncommutative Moyal spaces, which
remains so far a challenging problem, is then closely examined. The computation
in 4-D of the one-loop effective gauge theory generated from the integration
over a scalar field appearing in a renormalisable theory minimally coupled to
an external gauge potential is presented. The gauge invariant effective action
is found to involve, beyond the expected noncommutative version of the pure
Yang-Mills action, additional terms that may be interpreted as the gauge theory
counterpart of the harmonic term, which for the noncommutative -theory
on Moyal space ensures renormalisability. A class of possible candidates for
renormalisable gauge theory actions defined on Moyal space is presented and
discussed.Comment: 24 pages, 6 figures. Talk given at the "International Conference on
Noncommutative Geometry and Physics", April 2007, Orsay (France). References
updated. To appear in J. Phys. Conf. Se
- …
