62 research outputs found

    PRENYLATED CURCUMIN ANALOGUES AS MULTIPOTENT TOOLS TO TACKLE ALZHEIMER'S DISEASE

    Get PDF
    Alzheimer's disease is likely to be caused by copathogenic factors including aggregation of A\u3b2 peptides into oligomers and fibrils, neuroinflammation and oxidative stress. To date, no effective treatments are available and because of the multifactorial nature of the disease, it emerges the need to act on different and simultaneous fronts. Despite the multiple biological activities ascribed to curcumin as neuroprotector, its poor bioavailability and toxicity limit the success in clinical outcomes. To tackle Alzheimer's disease on these aspects, the curcumin template was suitably modified and a small set of analogues was attained. In particular, derivative 1 turned out to be less toxic than curcumin. As evidenced by capillary electrophoresis and transmission electron microscopy studies, 1 proved to inhibit the formation of large toxic A\u3b2 oligomers, by shifting the equilibrium towards smaller non-toxic assemblies and to limit the formation of insoluble fibrils. These findings were supported by molecular docking and steered molecular dynamics simulations which confirmed the superior capacity of 1 to bind A\u3b2 structures of different complexity. Remarkably, 1 also showed in vitro anti-inflammatory and anti-oxidant properties. In summary, the curcumin-based analogue 1 emerged as multipotent compound worth to be further investigated and exploited in the Alzheimer's disease multi-target context

    Industrial air pollution and mortality in the Taranto area, Southern Italy: A difference-in-differences approach.

    Get PDF
    Background: A large steel plant close to the urban area of Taranto (Italy) has been operating since the sixties. Several studies conducted in the past reported an excess of mortality and morbidity from various diseases at the town level, possibly due to air pollution from the plant. However, the relationship between air pollutants emitted from the industry and adverse health outcomes has been controversial. We applied a variant of the "difference-in-differences" (DID) approach to examine the relationship between temporal changes in exposure to industrial PM10 from the plant and changes in cause-specific mortality rates at area unit level. Methods: We examined a dynamic cohort of all subjects (321,356 individuals) resident in the Taranto area in 1998–2010 and followed them up for mortality till 2014. In this work, we included only deaths occurring on 2008–2014. We observed a total of 15,303 natural deaths in the cohort and age-specific annual death rates were computed for each area unit (11 areas in total). PM10 and NO2 concentrations measured at air quality monitoring stations and the results of a dispersion model were used to estimate annual average population weighted exposures to PM10 of industrial origin for each year, area unit and age class. Changes in exposures and in mortality were analyzed using Poisson regression. Results: We estimated an increased risk in natural mortality (1.86%, 95% confidence interval [CI]: −0.06, 3.83%) per 1 μg/m3 annual change of industrial PM10, mainly driven by respiratory causes (8.74%, 95% CI: 1.50, 16.51%). The associations were statistically significant only in the elderly (65+ years). Conclusions: The DID approach is intuitively simple and reduces confounding by design. Under the multiple assumptions of this approach, the study indicates an effect of industrial PM10 on natural mortality, especially in the elderly population. Keywords: Air pollution, Mortality, PM10, Steel industry, Confounding, Difference-in-difference

    High Specificity of Quantitative Methylation-Specific PCR Analysis for MGMT Promoter Hypermethylation Detection in Gliomas

    Get PDF
    Normal brain tissue from 28 individuals and 50 glioma samples were analyzed by real-time Quantitative Methylation-Specific PCR (QMSP). Data from this analysis were compared with results obtained on the same samples by MSP. QMSP analysis demonstrated a statistically significant difference in both methylation level (P = .000009 Mann Whitney Test) and frequencies (P = .0000007, Z-test) in tumour samples as compared with normal brain tissues. Although QMSP and MSP showed similar sensitivity, the specificity of QMSP analysis was significantly higher (93%; CI95%: 84%–100%) as compared with MSP (64%; 95%CI: 46%–82%). Our results suggest that QMSP analysis may represent a powerful tool to identify glioma patients that will benefit from alkylating agents chemotherapy

    Impact of different exposure models and spatial resolution on the long-term effects of air pollution.

    Get PDF
    Abstract Long-term exposure to air pollution has been related to mortality in several epidemiological studies. The investigations have assessed exposure using various methods achieving different accuracy in predicting air pollutants concentrations. The comparison of the health effects estimates are therefore challenging. This paper aims to compare the effect estimates of the long-term effects of air pollutants (particulate matter with aerodynamic diameter less than 10 μm, PM10, and nitrogen dioxide, NO2) on cause-specific mortality in the Rome Longitudinal Study, using exposure estimates obtained with different models and spatial resolutions. Annual averages of NO2 and PM10 were estimated for the year 2015 in a large portion of the Rome urban area (12 × 12 km2) applying three modelling techniques available at increasing spatial resolution: 1) a chemical transport model (CTM) at 1km resolution; 2) a land-use random forest (LURF) approach at 200m resolution; 3) a micro-scale Lagrangian particle dispersion model (PMSS) taking into account the effect of buildings structure at 4 m resolution with results post processed at different buffer sizes (12, 24, 52, 100 and 200 m). All the exposures were assigned at the residential addresses of 482,259 citizens of Rome 30+ years of age who were enrolled on 2001 and followed-up till 2015. The association between annual exposures and natural-cause, cardiovascular (CVD) and respiratory (RESP) mortality were estimated using Cox proportional hazards models adjusted for individual and area-level confounders. We found different distributions of both NO2 and PM10 concentrations, across models and spatial resolutions. Natural cause and CVD mortality outcomes were all positively associated with NO2 and PM10 regardless of the model and spatial resolution when using a relative scale of the exposure such as the interquartile range (IQR): adjusted Hazard Ratios (HR), and 95% confidence intervals (CI), of natural cause mortality, per IQR increments in the two pollutants, ranged between 1.012 (1.004, 1.021) and 1.018 (1.007, 1.028) for the different NO2 estimates, and between 1.010 (1.000, 1.020) and 1.020 (1.008, 1.031) for PM10, with a tendency of larger effect for lower resolution exposures. The latter was even stronger when a fixed value of 10 μg/m3 is used to calculate HRs. Long-term effects of air pollution on mortality in Rome were consistent across different models for exposure assessment, and different spatial resolutions

    Modulation of Amyloid β-Induced Microglia Activation and Neuronal Cell Death by Curcumin and Analogues

    Get PDF
    : Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is not restricted to the neuronal compartment but includes important interactions with immune cells, including microglia. Protein aggregates, common pathological hallmarks of AD, bind to pattern recognition receptors on microglia and trigger an inflammatory response, which contributes to disease progression and severity. In this context, curcumin is emerging as a potential drug candidate able to affect multiple key pathways implicated in AD, including neuroinflammation. Therefore, we studied the effect of curcumin and its structurally related analogues cur6 and cur16 on amyloid-β (Aβ)-induced microglia activation and neuronal cell death, as well as their effect on the modulation of Aβ aggregation. Primary cortical microglia and neurons were exposed to two different populations of Aβ42 oligomers (Aβ42Os) where the oligomeric state had been assigned by capillary electrophoresis and ultrafiltration. When stimulated with high molecular weight Aβ42Os, microglia released proinflammatory cytokines that led to early neuronal cell death. The studied compounds exerted an anti-inflammatory effect on high molecular weight Aβ42O-stimulated microglia and possibly inhibited microglia-mediated neuronal cell toxicity. Furthermore, the tested compounds demonstrated antioligomeric activity during the process of in vitro Aβ42 aggregation. These findings could be investigated further and used for the optimization of multipotent candidate molecules for AD treatment

    In vivo and in vitro efficacy of octreotide for treatment of enteric cryptosporidios

    No full text
    Previous evidence suggested a role of enterotoxin in the pathophysiology of cryptosporidiosis. If so, antisecretory drugs should be effective in reducing diarrhea. We evaluated the in vivo and in vitro efficacy of octreotide, which possesses antisecretory effects, for cryptosporidial diarrhea. Two children with severe cryptosporidial diarrhea were treated with octreotide. The volume modifications and chemical composition of stools were determined. Fecal supernatant was added to Caco-2 cell monolayers mounted in Ussing chambers with or without serosal octreotide and electrical parameters were monitored. Octreotide was effective in reducing the stool volume and fecal Na+ concentration. Fecal supernatant induced an enterotoxin-like increase in transepithelial potential difference. Octreotide induced a dose-dependent decrease in basal potential difference, consistent with an absorptive effect. In cells pretreated with octreotide, fecal supernatant induced an increase in the potential difference, whose magnitude and duration were significantly reduced compared to untreated cells. These results provide in vivo and in vitro evidence for the secretory nature of cryptosporidial diarrhea and for the efficacy of octreotide through a direct interaction with the enterocyte

    Probiotic supplementation in preterm: Feeding intolerance and hospital cost

    No full text
    We hypothesized that giving the probiotic strain Lactobacillus reuteri (L. reuteri) DSM 17938 to preterm, formula-fed infants would prevent an early traumatic intestinal inflammatory insult modulating intestinal cytokine profile and reducing the onset of feeding intolerance. Newborn were randomly allocated during the first 48 h of life to receive either daily probiotic (108 colony forming units (CFUs) of L. reuteri DSM 17938) or placebo for one month. All the newborns underwent to gastric ultrasound for the measurement of gastric emptying time. Fecal samples were collected for the evaluation of fecal cytokines. Clinical data on feeding intolerance and weight gain were collected. The costs of hospital stays were calculated. The results showed that the newborns receiving L. reuteri DSM 17938 had a significant decrease in the number of days needed to reach full enteral feeding (p < 0.01), days of hospital stay (p < 0.01), and days of antibiotic treatment (p < 0.01). Statistically significant differences were observed in pattern of fecal cytokine profiles. The antiinflammatory cytokine interleukin (IL)-10, was increased in newborns receiving L. reuteri DSM 17938. Pro-inflammatory cytokines: IL-17, IL-8, and tumor necrosis factor (TNF)-alpha levels were increased in newborns given placebo. Differences in the gastric emptying and fasting antral area (FAA) were also observed. Our study demonstrates an effective role for L. reuteri DSM 17938 supplementation in preventing feeding intolerance and improving gut motor and immune function development in bottle-fed stable preterm newborns. Another benefit from the use of probiotics is the reducing cost for the Health Care service
    corecore