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A B S T R A C T   

Long-term exposure to air pollution has been related to mortality in several epidemiological studies. The in-
vestigations have assessed exposure using various methods achieving different accuracy in predicting air pol-
lutants concentrations. The comparison of the health effects estimates are therefore challenging. This paper aims 
to compare the effect estimates of the long-term effects of air pollutants (particulate matter with aerodynamic 
diameter less than 10 μm, PM10, and nitrogen dioxide, NO2) on cause-specific mortality in the Rome Longitudinal 
Study, using exposure estimates obtained with different models and spatial resolutions. Annual averages of NO2 
and PM10 were estimated for the year 2015 in a large portion of the Rome urban area (12 × 12 km2) applying 
three modelling techniques available at increasing spatial resolution: 1) a chemical transport model (CTM) at 
1km resolution; 2) a land-use random forest (LURF) approach at 200m resolution; 3) a micro-scale Lagrangian 
particle dispersion model (PMSS) taking into account the effect of buildings structure at 4 m resolution with 
results post processed at different buffer sizes (12, 24, 52, 100 and 200 m). All the exposures were assigned at the 
residential addresses of 482,259 citizens of Rome 30+ years of age who were enrolled on 2001 and followed-up 
till 2015. The association between annual exposures and natural-cause, cardiovascular (CVD) and respiratory 
(RESP) mortality were estimated using Cox proportional hazards models adjusted for individual and area-level 
confounders. We found different distributions of both NO2 and PM10 concentrations, across models and 
spatial resolutions. Natural cause and CVD mortality outcomes were all positively associated with NO2 and PM10 
regardless of the model and spatial resolution when using a relative scale of the exposure such as the interquartile 
range (IQR): adjusted Hazard Ratios (HR), and 95% confidence intervals (CI), of natural cause mortality, per IQR 
increments in the two pollutants, ranged between 1.012 (1.004, 1.021) and 1.018 (1.007, 1.028) for the different 
NO2 estimates, and between 1.010 (1.000, 1.020) and 1.020 (1.008, 1.031) for PM10, with a tendency of larger 
effect for lower resolution exposures. The latter was even stronger when a fixed value of 10 μg/m3 is used to 
calculate HRs. Long-term effects of air pollution on mortality in Rome were consistent across different models for 
exposure assessment, and different spatial resolutions.   
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1. Introduction 

Several epidemiological studies have shown a clear association be-
tween long-term ambient air pollution exposure and adverse health ef-
fects (Pope et al., 2020; Vodons et al., 2018; Hoek et al., 2013; Chen and 
Hoek, 2020; WHO, 2013). Most of them have relied on existing cohort 
studies, with exposure assessment made at the residential address 
(Cesaroni et al., 2013; Lipsett et al., 2011; Lepeule et al., 2012; Gan 
et al., 2011). 

Alternative modelling approaches have historically been used to 
assess exposure. Land use regression (LUR) (Hoek, 2017; Hoek et al., 
2008; Cesaroni et al., 2012) is an empirical model which establishes a 
relationship between observed concentrations (dependent variable) and 
land-use predictors (independent variables) to better describe the spatial 
variability of atmospheric pollution. Once the relationship is estab-
lished, the model predicts air quality levels at external receptor points, 
such as residential addresses of a longitudinal study. More recently, 
machine-learning (ML) approaches, such as the Random Forest, have 
been used thanks to their flexibility and capability to capture complex 
relationships and non-linearities between predictors and observations 
(Stafoggia et al., 2019; Gariazzo et al., 2020). 

Dispersion and chemical transport models (CTM) are a valid alter-
native: they consider the major processes affecting air pollution for-
mation and dispersion, such as emissions, dispersion, chemical reactions 
in gaseous and aerosol phases, and deposition (Gariazzo et al., 2007; 
Silibello et al., 2008; Zhang et al., 2012). 

Ensemble models, i.e. weighted averages of different model outputs, 
have been recently proposed to exploit the relative benefits of individual 
base learners (Shtein et al., 2020). 

In urban areas, the effect of urban structures, like buildings, is not 
considered or dealt with a simplified form using either land use data or 
urban features parametrizations considered by meteorological models 
(e.g. roughness length). Indeed, the presence of buildings produces low 
dispersion conditions, accumulation of pollutants and large spatial in-
homogeneity in their concentrations. Since the simulation of such effects 
can be performed by complex numerical models, e.g. computational 
fluid dynamic (CFD) or large eddy simulation (LES) techniques, whose 
application is possible only on small domains and for limited period 
(hours to days), epidemiological studies do not include such building 
effects on exposure estimations. 

As there is no consensus on the best approach for estimating expo-
sure, methods are often compared with controversial results (Chen et al., 
2019; Beverland et al., 2012; Wang et al., 2015; de Hoogh et al., 2014; 
Yu et al., 2018; Butland et al., 2020). In addition, there are few studies 
comparing the impact of different exposure models on the assessment of 
long-term health effects (Sellier et al., 2014; Yap et al., 2012; McGuinn 
et al., 2017; Wang et al., 2015). Results depend on models used, spatial 
resolution, pollutants, study areas and health outcomes. More research 
is needed to understand to what extent the accuracy in estimating 
small-scale spatial variability of air pollution and the related intra-urban 
differences, affects the estimation of health effects. 

The research activities available from the BEEP project (Big data in 
Environmental and occupational EPidemiology) have been used. BEEP 
main goals were to improve exposure assessment and to support envi-
ronmental epidemiological studies in Italy at both national (Stafoggia 
et al., 2019; Shtein et al., 2020; Marinaccio et al., 2019) and urban 
(Gariazzo et al., 2020; Fasola et al., 2020) scales. This paper aims to 
compare long-term effects of air pollutants (particulate matter with 
aerodynamic size less than 10 μm, PM10, and nitrogen dioxide, NO2) on 
cause-specific mortality from exposure estimates available in the BEEP 
project and obtained by different models and spatial resolutions. We 
took advantage of the existence of a consolidated longitudinal study in 
Rome (Cesaroni et al., 2010, 2013) in order to investigate differences 
across models in estimating pollutants exposures, and to analyse to what 
extent different methods and resolution in air pollution exposure 
assessment might influence estimates on mortality from natural, 

cardiovascular and respiratory causes. 
Section 2 presents the study area, the population under study, the 

exposure models herein used and the statistical model applied to assess 
the association of health outcomes with exposures. The incidence of 
health outcomes in the population under study, the model’s exposure 
and the estimated long-term health effects are presented in section 3. A 
discussion of main findings follows in section 4. 

2. Material and methods 

2.1. Study area and study population 

Rome is the largest Italian city, with a population of about 2.5 
million inhabitants in a 1,290 km2 area, mostly living within the large 
urban area (Fig. 1). The Rome’s air quality has been described in sci-
entific articles (Gariazzo et al., 2007, 2015, 2016, 2020; Cattani et al., 
2017) and in local reports (ARPA Lazio, 2018). The related health effects 
have been also assessed (Cesaroni et al., 2012, 2013, 2014; Renzi et al., 
2018; Cerza et al., 2018). 

Most of studies are based on the Rome Longitudinal Study (RoLS) 
(Cesaroni et al., 2010, 2013; Paglione et al., 2020). RoLS is an admin-
istrative cohort enrolled at Census 2001 and followed up until 2015. 
Population records have been linked to health information systems, such 
as mortality registry, hospital discharge files, and drugs prescriptions. 
All residents above 30 years of age at baseline, and who had resided in 
the same address since at least 5 years before the enrolment, have been 
included. Baseline information is available on sex, age, place of birth, 
education level, marital status, occupation (general statistical cate-
gories, without data on occupational exposures) and residential history. 
A small-area (census block) composite index of socioeconomic position 
(SEP) (Cesaroni et al., 2006) is also added to better characterize resi-
dential social deprivation. A follow-up to determine vital status using 
the Rome Municipal Register during the period October 2001–December 
2015 has been carried out. RoLS is part of the National Statistical Pro-
gram and was approved by the Italian Data Protection Authority. 

For computational reasons (see par. 2.2.3), we could only include a 
portion of the whole study area, encompassing only 12 × 12-km and 
482,259 (38%) of the original 1,263,715 subjects. 

The study area is shown in Fig. 1 (red box). This area includes a 
portion of the city’s centre with residential, commercial and touristic 
districts, as well as outskirts neighbourhoods. High, medium and low 
urbanization levels, with different building heights, can be found in this 
area, as well as open urban parks. A statistical analysis of some urban-
ization parameters of the studied area is shown in table S1 of the Sup-
plementary Materials (SM). 

Abbreviations: 

CI Confidence Interval 
CFD Computational Fluid Dynamic 
CTM Chemical Transport Model 
CVD Cardiovascular disease 
FARM Flexible Air quality Regional Model 
HR Hazard Ratio 
IQR Interquartile Range 
LPDM Lagrangian Particle Dispersion Model 
LUR Land Use Regression model 
ML Machine Learning 
PMSS Parallel Micro-Swift-Spray model 
RESP Respiratory disease 
RoLS Rome Longitudinal Study 
SEP Socioeconomic position 
WRF Weather Research and Forecasting model  
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The size of the area was selected on the basis of computational/ 
budget constraints for yearly simulation; on an High Performance 
Computer (HPC) platform with 180 cores, the computational time was 
4.5 h per simulated day for the selected domain with detailed traffic 
sources considered. The position of the area was chosen to maximise the 
number of underlying resident population and, at the same time, to 
optimize the contrast in exposure according to former studies (eg. 
Cesaroni et al., 2013). 

2.2. Exposure assessment to air pollutants 

Exposure assessment studies were carried out using three modelling 
techniques applied at different temporal and spatial resolutions: 1) a 
CTM; 2) a ML model; 3) a micro-scale Lagrangian particle dispersion 
model (LPDM). A description of the above model techniques is following 
in the next subsections. 

2.2.1. The chemical transport model FARM 
As a first step, an air quality modelling system (AQMS) was used to 

provide air pollution concentration fields at urban scale. The AQMS is 
based on the CTM FARM (Flexible Air quality Regional Model: Gariazzo 
et al., 2007; Silibello et al., 2008). 

Air pollutants emissions were derived from a local emission in-
ventory, integrated with detailed vehicles emissions estimated from 
traffic flow data. Meteorological data were provided by the prognostic 
non-hydrostatic model WRF (Skamarock et al., 2008) applied with the 
so-called Building Environment Parameterization (BEP, Martilli et al., 
2002). 

Boundary conditions to WRF and FARM models were provided by 
previous national scale simulations, performed by same models and 
described elsewhere (Silibello et al., 2019). Details about the CTM and 
WRF models and their use in predicting air pollutants concentrations in 
the main metropolitan areas of Italy carried out within the BEEP project 
are reported by Gariazzo et al. (2020). 

In brief, the simulations with the above modelling systems have 
been performed for the year 2015 over the Metropolitan area of Rome 
(60 × 60 km2), on an hourly basis, with a horizontal resolution of 

1 km. Annual values were derived for this study. Although FARM 
provided concentrations for many gaseous pollutants and aerosol 
fraction and components, only NO2 and PM10 were considered since 
they can be simulated by the micro-scale model. For the reference 
year, FARM was able to achieve an R2 of 0.49 for both NO2 and PM10 
(see Table S2 SM). 

2.2.2. The random forest models 
A second step, based on a Random Forest (RF) ML technique, was 

performed to downscale FARM model concentration fields, on a daily 
basis, at a higher spatial resolution of 200 m. RF models consist of an 
ensemble of decision trees (forest), suitable for both classification and 
regression problems (Liaw and Wiener, 2002). 

In our application, the RF model used a set of spatial and spatial- 
temporal predictors to predict daily concentrations of air pollutants 
over the whole metropolitan area at a spatial resolution of 200m. Some 
of these predictors were the FARM model results, the imperviousness 
surface areas (a Copernicus satellite data), the Corine land cover, the 
length and distance from types of roads, and the traffic data derived 
from the Open Transport Map open data. Details about the RF applica-
tion can be found in Gariazzo et al. (2020). 

In this study, we used the RF NO2 and PM10 daily predictions ob-
tained for the city of Rome for the reference year (2015), averaged over 
an annual base. The 10-fold cross-validated RF model results were able 
to achieve an R2 of 0.62 and 0.76 for NO2 and PM10, respectively (see 
Table S2 SM). 

2.2.3. The micro-scale Lagrangian particle dispersion model 
The third step was based on the PMSS (Parallel Micro-Swift-Spray) 

modelling system (Oldrini et al., 2017) to provide air pollution con-
centration fields on a 12 × 12 km2 domain (see red box in Fig. 1) 
covering a large portion of the city of Rome, at the horizontal resolu-
tion of 4 m. This limited size domain was caused by the high compu-
tational needs required by such modelling system. PMSS is constituted 
by the parallel microscale versions of MSS modelling system, composed 
by the SWIFT diagnostic flow model and the SPRAY Lagrangian par-
ticle dispersion model. 

Fig. 1. Map of the city of Rome, Italy, with the study area (in red) (12 × 12 Km2). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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SWIFT is a terrain-following 3D diagnostic mass-consistent model 
providing wind, turbulence, and temperature fields, taking into account 
building effects (Tinarelli et al., 2007; Hanna et al., 2011; Trini Castelli 
et al., 2017). 

SPRAY (Tinarelli et al., 2012) is a 3D Lagrangian Particle Dispersion 
Model, where the dispersion of an atmospheric primary pollutant is 
simulated following the trajectories of a suitably large number of nu-
merical particles. The trajectories are determined integrating in time a 
3D form of the Langevin equation or the random velocity, following 
Thomson (1987). 

PMSS is suitable for applications in built-up areas over relatively 
large domains (up to the dimension of entire cities) using a domain 
decomposition into squared tiles, allowing a parallel computation over 
large HPC systems and simulations at microscale over large periods such 
an entire year. Hourly averaged ground level concentration of NOx and 
PM10 emitted by the road traffic have been computed by PMSS using 
detailed vehicular traffic information provided by the mobility agency 
of Rome. The first guess flow was the same provided to the FARM model 
by the WRF prognostic meteorological model. The effect of buildings on 
flow was then estimated by SWIFT component of PMSS. As PMSS pro-
vided pollutants concentration for the traffic source only, a further no- 
traffic FARM simulation for the year 2015 has been performed 
excluding traffic emissions within the microscale domain. We refer to 
this simulation as “no-traffic FARM”. The latter includes other sources 
contributions coming from both outside the micro-scale domain, and 
inside it, not directly considered by PMSS (such as the heating systems 
during the winter season). Then, the traffic contributions estimated by 
PMSS and those estimated by the “no-traffic FARM” run were summed 
up. This approach intrinsically avoids the double counting of traffic 
emissions within the micro-scale domain, preserving physical and 
chemical consistency between the two models in a simple way, as the 
two simulations take in account different emission sources. According to 
this approach, the “no-traffic FARM” simulation reproduces the pollu-
tion levels inside the city (the “urban concentration”), while PMSS 
captures the dispersion processes within street-canyons (the “street 
increment”). To calculate the NO2 contribution from the NOx directly 
simulated, hourly results provided by the full sources FARM simulation 
have been used in a polynomial regression analysis, which provided a 
function for NOx/NO2 concentration ratio to be applied in the urban area 
of Rome. For the year 2015, the combination of PMSS and “no-traffic 
FARM” results was able to achieve an R2 of 0.44 for NO2 and 0.5 for 
PM10 (see Table S2 SM). Examples of a NO2 concentration field at micro- 
scale and a time series comparison of modelled vs observed daily NO2 
concentration are shown in figures S1 and S2 of SM respectively. The 
NO2 and PM10 hourly results were then averaged on an annual base to be 
used for health effect estimations. In the following sections, we refer to 
PMSS simulation as to the sum of PMSS and “no-traffic FARM” runs. 

2.2.4. Assessment of the exposure for the individuals in the cohort 
The NO2 and PM10 concentration fields, provided by the above 

models, together with the cohort addresses of the studied population, 
were processed using a common spatial reference system to extract 
mean annual exposures at each residential address. While FARM and RF 

model results provided the exposure at their own spatial resolution, 
1 km and 200 m respectively, for the micro-scale model PMSS we took 
advantage from the extremely high spatial resolution (4 m) to calculate 
the mean exposure also at following buffer sizes: 12, 24, 52, 100 and 
200 m. Table 1 shows a list of available models results and related 
exposure data used for this study. Finally, individual exposure was 
assigned from models’ exposures available at each residential address 
(about 49K). 

2.3. Outcomes and statistical analyses 

We analysed mortality for natural non-accidental causes (Interna-
tional Classification of diseases, 9th revision - ICD-9: codes < 1–799), 
cardiovascular (CVD) (ICD-9: codes 390–459) and respiratory (RESP) 
(ICD-9: codes 460–519) causes. Age was used as underlying time axis in 
the Cox proportional hazards model. We further adjusted for individual- 
level covariates (sex as a stratification variable, place of birth, education 
level, occupation) and area-level covariates (census-block SES and in-
come, unemployment rate, % of low or very high education in the 
neighbourhood). 

Each exposure variable (NO2 or PM10 from different models/reso-
lution) was analysed separately and included in the Cox model as a 
linear term. The association estimates are reported as adjusted Hazard 
Ratios (HR) and corresponding 95% Confidence Intervals (95% CI) per 
interquartile range (IQR) increment and per 10 μg/m3 (see SM) in the 
exposure. 

3. Results 

3.1. Population under study and incidence of mortality 

Table 2 summarizes the relevant data of the cohort under study. A 
total of 482,259 residents were included with a mean age of 56 years 
(SD = 15.8, IQR = 25.9). Most of the subjects had a high school educa-
tional level (34.4%) or a university degree (23.5%). Retired persons 
were 25%, followed by housewives (19.9%), while people employed 
were 33% in non-manual and 12.9% in manual/other activities, 
respectively. As for social economic position, 28.5% of the population 
was in the very high category, whereas 8.8% was in the very low cate-
gory. During the follow-up there were 98,480, 39,393 and 6,558 deaths 
from natural, CVD and RESP causes, respectively. 

3.2. Exposure assessment by model and their correlations 

Fig. 2 shows maps of mean annual NO2 and PM10 concentrations 
estimated by FARM, RF and PMSS models for the year 2015. The 
improvement in the details of the estimated concentration is clearly 
detectable going from the model with the lowest resolution (FARM) to 
that with the highest one (PMSS). The larger pollutants’ concentrations 
produced by roads emissions are clearly visible in more spatially 
resolved models (RF and PMSS), as expected. The micro-scale model 
PMSS shows the highest concentrations, especially in the high-urbanized 
districts, due to lower dispersion conditions induced by the presence of 
buildings. 

Table 3 shows the values of the main statistical parameters for NO2 
and PM10 exposure data for the individuals in the cohort, estimated for 
each considered model and related resolution. All models show very 
close mean values for both pollutants (43.0 and 32.0 μg/m3 for NO2 and 
PM10, respectively), except for the FARM ones, which exhibits lower 
values (29.2 and 25.5 μg/m3 for NO2 and PM10, respectively) due to its 
lower spatial resolution that does not permit to capture the levels 
commonly observed at kerb-side monitoring stations. There are larger 
differences in the models for the standard deviations (SDs), the highest 
percentiles and maximum values. The higher the spatial resolution, the 
higher are the SDs, 95th percentiles and maximum values. As for ex-
posures provided by PMSS model, estimates in lower buffer sizes have 

Table 1 
List of available models results and related exposure estimation data.  

Model Model 
characteristics 

Model 
resolution 

Exposure 
data 

Exposure spatial 
representativeness 

PMSS LPDM with 
obstacles effect 
treatment 

4 m PMSS_4m 4 m 
PMSS_12m 12 m 
PMSS_24m 24 m 
PMSS_52m 52 m 
PMSS_100m 100 m 
PMSS_200m 200 m 

RF ML model 200 m RF_200m 200 m 
FARM CTM 1 km FARM_1km 1 km  
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the highest percentiles and maximum values distribution due to spatial 
heterogeneities of the concentration fields produced by the dispersion 
around buildings. The NO2 95th percentile estimated by RF and PMSS 
agree at lower resolution (200 m), while the maximum values signifi-
cantly differ. The ubiquitous nature of PM10 shows minor differences 
from higher to lower spatial resolutions. The NO2 and PM10 statistical 
distributions (5th - 95th percentiles) exhibit lower exposure values 
estimated by FARM than those computed by PMSS and RF models. To 
better visualize these results, boxplots and density plots of cohort 
population pollutants exposure by model are presented in the SM 
(Figure S3). 

Table 4 shows the correlation coefficients among models. As ex-
pected, the correlation among the exposure estimations based on PMSS 
model at different buffer sizes are very good for both pollutants 
(r = 0.99–0.80). As for NO2, PMSS model is well correlated with both RF 
and FARM models (r = 0.6) while, RF is well correlated with FARM 
(r = 0.58). Similar results are obtained for PM10. Scatter plots between 
model results are presented in SM for both NO2 and PM10 (Figure S4). 
Although the modelling approaches are different (Lagrangian -PMSS-, 
statistical -RF- and Eulerian -FARM-), they share most of the input data, 
like emissions, flow and territorial data. Consequently, these degrees of 
correlation among models are partially expected. 

3.3. Long term health effects according to different exposure models 

Table 5 shows the adjusted HR and 95% CI for increments 

corresponding to the IQR of pollutants for natural non-accidental, car-
diovascular and respiratory mortality obtained using the different 
exposure models and resolutions. Forest plots of HRs for fixed increment 
of 10 μg/m3 are presented in the SM (Figure S5). Overall, all exposure 
models show significant associations for natural non-accidental and 
cardiovascular mortality for both pollutants. Respiratory mortality 
showed positive association with NO2 and PM10 in all models, but 
without reaching statistical significance. HR values span from 1.012 to 
1.018 (mean = 1.016; SD = 0.002) and from 1.022 to 1.042 
(mean = 1.033; SD = 0.006) for NO2 natural and cardiovascular mor-
tality, respectively, using the different exposure models. The corre-
sponding HR values for PM10 span from 1.010 to 1.020 (mean = 1.015; 
SD = 0.003) and from 1.027 to 1.042 (mean = 1.035; SD = 0.006) for 
natural and cardiovascular mortality, respectively. 

The HRs results obtained from the PMSS exposure model at different 
buffer sizes (from 4 to 200 m) for natural and cardiovascular mortality 
show an increasing trend with decreasing model resolution for both 
pollutants. The HR value at the lowest PMSS resolution (PMSS_200m) 
agrees with the FARM results obtained at 1 km of spatial resolution. 
Conversely, a small drop in HR values is observed for RF results at 200m 
resolution, particularly for cardiovascular mortality. However, accord-
ing to confidence intervals of each HRs prediction, those differences in 
HRs values are not statistically significant. Fig. 3 summarizes HRs results 
of natural mortality for different model and resolution. 

Table 2 
Characteristics of population cohort and incidence of natural, cardiovascular and respiratory mortalities.  

Continuous covariates n mean sd min median max IQR   

Age (baseline) Years 482,259 56.5 15.8 30.0 55.9 107.3 25.9   
High education % (by neighbourhood) 482,259 19.0 9.09 2.51 18.52 37.24 17.17   
Very low education % (by neighbourhood) 482,259 22.1 6.32 12.69 20.93 37.78 10.56   
Unemployment rate % (by neighbourhood) 482,259 12.9 3.39 7.38 11.98 24.37 4.62    

Categorical covariates Total population Natural mortality CVD mortality RESP mortality 

variable Category n % P.YEARS n rate*1000 n rate*1000 n rate*1000 

sex Male 213,102 44.2 2,501,644 45,147 18.0 16,581 6.6 3,132 1.3 
Female 269,157 55.8 3,244,277 53,333 16.4 22,812 7.0 3,426 1.1 

marital status Married 298,340 61.9 3,651,709 51,541 14.1 18,015 4.9 3,228 0.9 
Single 86,112 17.9 1,060,418 10,648 10.0 4,218 4.0 724 0.7 
Separated 36,334 7.5 447,520 4,377 9.8 1,370 3.1 242 0.5 
Widow 61,473 12.7 586,275 31,914 54.4 15,790 26.9 2,364 4.0 

Education level University 113,190 23.5 1,416,752 15,653 11.0 5,904 4.2 1,028 0.7 
High school 165,934 34.4 2,057,601 22,398 10.9 8,337 4.1 1,371 0.7 
Junior school 103,752 21.5 1,224,467 21,516 17.6 8,392 6.9 1,405 1.1 
<=Primary 99,383 20.6 1,047,101 38,913 37.2 16,760 16.0 2,754 2.6 

Occupational status 1 = Employed, non-manual I 83,505 17.3 1,091,890 4,788 4.4 1,275 1.2 208 0.2 
2 = Employed, non-manual II 75,481 15.7 990,599 2,959 3.0 653 0.7 104 0.1 
3 = Employed, manual 35,750 7.4 452,680 2,193 4.8 610 1.3 68 0.2 
4 = Employed, other 26,652 5.5 342,398 1,372 4.0 343 1.0 57 0.2 
5 = Housewives 95,815 19.9 1,117,780 24,936 22.3 10,881 9.7 1,616 1.4 
6 = Unemployed 19,921 4.1 252,582 1,147 4.5 256 1.0 45 0.2 
7 = Retired 122,024 25.3 1,261,259 52,429 41.6 21,577 17.1 3,844 3.0 
8 = Other condition 23,111 4.8 236,734 8,656 36.6 3,798 16.0 616 2.6 

Socio economic position 1 = Very high 137,675 28.5 1,644,463 28,616 17.4 11,824 7.2 1,917 1.2 
2 = High 134,528 27.9 1,600,409 27,366 17.1 10,984 6.9 1,822 1.1 
3 = Medium 103,552 21.5 1,234,409 20,562 16.7 8,104 6.6 1,393 1.1 
4 = Low 64,070 13.3 760,599 13,080 17.2 5,148 6.8 842 1.1 
5 = Very low 42,434 8.8 506,042 8,856 17.5 3,333 6.6 584 1.2 

Income98 1 = Very low 8,799 1.8 102,127 2,406 23.6 976 9.6 189 1.9 
2 10,771 2.2 131,980 1,815 13.8 682 5.2 105 0.8 
3 15,534 3.2 184,602 3,056 16.6 1,263 6.8 191 1.0 
4 86,392 17.9 1,040,793 16,755 16.1 6,362 6.1 1,040 1.0 
5 14,158 2.9 171,478 2,565 15.0 992 5.8 172 1.0 
6 70,916 14.7 840,267 14,897 17.7 6,123 7.3 906 1.1 
7 85,916 17.8 1,027,953 16,986 16.5 6,796 6.6 1,133 1.1 
8 103,417 21.4 1,227,052 21,238 17.3 8,546 7.0 1,490 1.2 
9 46,806 9.7 549,195 10,501 19.1 4,386 8.0 728 1.3 
10 = Very high 39,550 8.2 470,475 8,261 17.6 3,267 6.9 604 1.3 

Source: data retrieved from the Latium regional health information system. 
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Fig. 2. Mean annual (2015) concentration (μg/m3) of NO2 and PM10 estimated for the whole city by the CTM FARM and the Random Forest (RF) models, and for a 
portion (12 × 12km2) of it by the micro-scale Lagrangian particles with building effects (PMSS) model. The red box shows the studied area. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Table 3 
Main statistics of mean annual (2015) NO2 and PM10 exposure (μg m− 3) of cohort population estimated by the CTM FARM (FARM), the Random Forest (RF) and the 
micro-scale Lagrangian particles with building effects (PMSS) models.  

Pollutant Model Res (m) n. data min mean SD percentile IQR 

5 25 50 75 95 max 

NO2 PMSS 4 416,766 9.8 43.6 13.5 25.5 34.1 41.9 50.9 67.2 204.5 16.7 
PMSS 12 480,197 9.9 44.1 13.1 26.2 34.9 42.7 51.3 66.7 190.9 16.4 
PMSS 24 482,259 10.0 44.3 12.9 26.4 35.1 43.2 51.6 66.3 162.0 16.5 
PMSS 52 482,259 10.4 43.6 12.1 26.4 34.8 42.7 50.8 64.3 119.6 16.0 
PMSS 100 482,259 10.6 43.2 11.3 26.4 34.9 42.7 50.7 63.0 102.0 15.8 
PMSS 200 482,259 11.1 42.8 10.5 26.3 35.0 42.8 49.9 60.9 84.6 14.9 
RF 200 482,259 20.5 43.8 9.7 29.6 36.6 41.7 51.1 61.7 67.6 14.4 
FARM 1000 482,259 15.7 29.2 3.7 22.0 26.7 29.2 31.8 35.7 35.9 5.1 

PM10 PMSS 4 416,766 11.1 32.9 10.8 19.6 25.3 31.2 38.4 52.2 186.5 13.1 
PMSS 12 480,197 11.1 33.3 10.6 19.9 25.8 32.0 39.0 51.6 171.4 13.2 
PMSS 24 482,259 11.2 33.5 10.6 20.0 25.8 32.3 39.4 51.8 139.3 13.5 
PMSS 52 482,259 11.2 33.2 9.9 20.0 25.7 32.1 39.2 50.3 106.8 13.6 
PMSS 100 482,259 11.2 33.0 9.3 19.9 25.7 32.2 39.3 49.4 87.7 13.6 
PMSS 200 482,259 11.4 32.7 8.7 19.8 25.7 32.7 38.8 48.1 67.8 13.1 
RF 200 482,259 24.0 30.9 1.9 27.4 29.7 31.1 32.2 33.9 38.2 2.5 
FARM 1000 482,259 12.9 25.5 5.2 16.3 21.8 25.2 28.6 35.6 38.2 6.8  
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4. Discussion 

This study aimed at evaluating whether estimates of association 
between long-term exposure to air pollutants and mortality differed by 
exposure assessment method and spatial resolution. We found consistent 
results across exposure models when estimates were expressed per IQR. 
When we used a fixed increment (10μg/m3), the effects were generally 
larger for larger buffer size (PMSS model, maximum effect at 200 m 
resolution) and using RF and FARM models. 

In this work, a detailed exposure assessment study for the metro-
politan area of Rome, Italy has been carried out using state-of-art 
modelling techniques. Exposure were available at different resolution, 
from 4m to 1 km, depending on the model used. The models were also 
different in terms of underlying paradigm (deterministic versus statis-
tical), chemical-physical processes considered, data used, computational 
requirements. 

As an example, CTM models need emissions to be spatially and 
temporally disaggregated over the model domain, as well as boundary 
and initial conditions determined and provided for the urban analysis. 

The main efforts in machine learning modelling approach is the 
identification of a coherent set of spatial-temporal predictors, supposed 
to be related to the investigated phenomena, and their integration in a 
GIS environment. 

Lagrangian particles models with obstacles treatment, in addition to 
data required by CTM models, need a detailed description of urban 
structure that must be provided at the target resolution of the model 
(4 m in this case). Furthermore, as these micro-scale models consider the 
buildings effect on flow and consequently on concentrations, we expect 
high spatial heterogeneities in the predicted pollutants concentration, 
particularly in highly built urban districts. Consequently, assigning the 
exposure at the residential address using the highest spatial PMSS res-
olution, might produce a misclassification of the actual neighbourhood 
exposure, with possible bias. For this reason, we considered different 
buffer sizes for PMSS results to consider the mean effect of surroundings 
areas at different distances from the residential address. 

The above modelling techniques require also different computation 
resources and have different running time (from 11 min for FARM to 
4.5 h for PMSS to run a single day). 

Although the models provide exposure estimates at different spatial 
resolution leading to differences in the IQRs values, particularly be-
tween PMSS and FARM models, the differences in terms of HRs values 
for non-accidental and cardiovascular mortalities due to either NO2 or 
PM10 exposures were not statistically significant. These results imply 
that computational efforts required to estimate exposure at very fine 
resolution, using sophisticated model techniques like PMSS, do not 
provide significant differences in either HRs or their CI of long term 
health effects assessment with respect to simpler, less resolved and 
computational intensive modelling approaches like CTM or machine 
learning methods. Possibly, the annual averaging could have reduced 
the spatial-temporal inhomogeneity existing at hourly and daily 
resolution. 

The models were highly correlated in estimating population expo-
sures (r = 0.6–0.9) and differed only for the extreme values (above 95th 
percentile). Similar results in exposure analysis were obtained by Chen 
et al. (2019) comparing 16 algorithms driven by satellite, CTM, land use 
and traffic data, to predict annual average PM2.5 and NO2 concentrations 
across Europe. 

All models predict mean HRs of 1.015 (SD = 0.002) and 1.032 
(SD = 0.006) for non-accidental and cardiovascular mortalities respec-
tively due to NO2 exposure, while the corresponding HRs mean values 
for PM10 exposure are 1.015 (SD = 0.003) and 1.034 (SD = 0.006). 
Respiratory mortality was found to be positively associated with the 
considered pollutants, but without reaching statistical significance. The 
statistical power was lower for respiratory mortality (number of cases 
6,558) than for the other conditions. 

In a study involving the whole population cohort of Rome, Cesaroni 
et al. (2013) found HRs of 1.03 (CI 1.02–1.04) for both non-accidental 
and cardiovascular mortalities for increments of IQR of 10.7 μg/m3 of 

Table 4 
Correlation between pairs of exposure modelsa estimating mean annual (2015) 
NO2 and PM10.  

Pollutant exposure model overall 

n. data r 

NO2 PMSS_4m PMSS_12m 416,766 0.99 
PMSS_24m 416,766 0.97 
PMSS_52m 416,766 0.92 
PMSS_100m 416,766 0.87 
PMSS_200m 416,766 0.79 
RF_200m 416,766 0.59 
FARM_1km 416,766 0.56 

RF_200m FARM_1km 482,259 0.58 
PM10 PMSS_4m PMSS_12m 416,766 0.99 

PMSS_24m 416,766 0.97 
PMSS_52m 416,766 0.93 
PMSS_100m 416,766 0.88 
PMSS_200m 416,766 0.81 
RF_200m 416,766 0.56 
FARM_1km 416,766 0.65 

RF_200m FARM_1km 482,259 0.70  

a CTM FARM (FARM_1km), Random Forest (RF_200m) and micro-scale 
Lagrangian with building effects (PMSS_4-200m). 

Table 5 
Adjusted HRs (95% CI) for increments corresponding to interquartile ranges (IQRs) for natural, cardiovascular, and respiratory mortality according to different 
exposure models, Rome 2001–2015.  

Pollutant Model n. data IQR Natural (n = 98,480) 
HRa (95% CI) 

Cardiovascular (n = 39,393) 
HRa (95% CI) 

Respiratory (n = 6,558) 
HRa (95% CI) 

NO2 PMSS_4m 416,766 16.7 1.013 (1.004,1.022) 1.028 (1.014,1.042) 1.014 (0.980,1.050) 
PMSS_12m 480,197 16.4 1.012 (1.004,1.021) 1.029 (1.016,1.043) 1.006 (0.973,1.039) 
PMSS_24m 482,259 16.5 1.013 (1.004,1.022) 1.030 (1.016,1.044) 1.004 (0.970,1.039) 
PMSS_52m 482,259 16.0 1.015 (1.005,1.024) 1.033 (1.018,1.048) 1.004 (0.969,1.041) 
PMSS_100m 482,259 15.8 1.017 (1.007,1.027) 1.037 (1.021,1.053) 1.016 (0.977,1.056) 
PMSS_200m 482,259 14.9 1.018 (1.007,1.028) 1.037 (1.020,1.055) 1.016 (0.975,1.059) 
RF_200m 482,259 14.4 1.016 (1.005,1.027) 1.022 (1.005,1.039) 1.002 (0.962,1.044) 
FARM_1km 482,259 5.1 1.018 (1.008,1.028) 1.042 (1.025,1.058) 1.014 (0.975,1.054) 

PM10 PMSS_4m 416,766 13.1 1.013 (1.004,1.022) 1.027 (1.013,1.041) 1.007 (0.973,1.041) 
PMSS_12m 480,197 13.2 1.012 (1.004,1.021) 1.029 (1.015,1.042) 0.999 (0.966,1.032) 
PMSS_24m 482,259 13.5 1.013 (1.004,1.022) 1.029 (1.015,1.043) 0.996 (0.963,1.032) 
PMSS_52m 482,259 13.6 1.015 (1.005,1.025) 1.034 (1.018,1.049) 0.996 (0.959,1.034) 
PMSS_100m 482,259 13.6 1.018 (1.007,1.029) 1.039 (1.022,1.057) 1.007 (0.966,1.050) 
PMSS_200m 482,259 13.1 1.020 (1.008,1.031) 1.042 (1.024,1.061) 1.009 (0.965,1.055) 
RF_200m 482,259 2.5 1.010 (1.000,1.020) 1.028 (1.012,1.044) 1.011 (0.973,1.052) 
FARM_1km 482,259 6.8 1.017 (1.007,1.026) 1.041 (1.025,1.057) 1.007 (0.970,1.046)  

a Adjusted for sex, marital status, place of birth, education, occupation, and area-based socioeconomic position. 
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NO2 using a LUR exposure model (Cesaroni et al., 2012). The same study 
found HRs of 1.02 (CI 1.02–1.03) and 1.04 (CI 1.03–1.05) for 
non-accidental and cardiovascular mortalities for increments of IQR of 
5.8 μg/m3 of PM2.5 estimated by using the same CTM model (FARM) 
used in this study, but run for a different year. Similarly Cesaroni et al. 
(2013) also obtained no statistically significant positive association with 
respiratory mortality. 

Our results are within the ranges of these local studies and of other 
systematic reviews (Hoek et al., 2013; Atkinson et al., 2018; Chen and 
Hoek, 2020). Small differences can be ascribed to different models used 
to assess exposure, size and age ranges of the populations under study 
and the different characteristics of the study areas. 

While there are many studies comparing modelling approaches and 
their performance in assessing exposure (Yu et al., 2018; Chen et al., 
2019; Buteau et al., 2017; de Hoogh et al., 2014; Beverland et al., 2012), 
there are few studies about the influence of exposure models and related 
errors on the assessment of health effects. 

Sellier et al. (2014) compared four exposure models, including two 
LUR models and a dispersion model to evaluate the effect on the esti-
mation of birth weight in two French metropolitan areas. They found 
effect estimates of NO2 on birth weight varying in accordance with the 
exposure model, while PM10 effects were more consistent across expo-
sure models, indicating a possible effect induced by spatially heteroge-
neous pollutants like NO2. 

Yap et al. (2012) carried out a study about black smoke effects on 
long-term mortality in a Scottish population, using three different 
spatial-temporal models. They found that long-term mortality was 
critically sensitive to the exposure assignment model used, highlighting 
the critical importance of reliable estimation of exposures on intra-urban 
spatial scales to avoid potential misclassification bias. 

Butland et al. (2020) compared LUR models, dispersion models and 
two hybrid combinations of LUR and dispersion models, for nitrogen di-
oxide and ozone exposures in the context of a multilevel epidemiological 
analysis. They found that combining outputs from different air pollution 
modeling approaches may reduce bias in health effect estimation. 

Vodonos et al. (2018) in a systematic review of cohort studies 
examining the association between long-term exposure to PM2.5 and 
mortality, found that differences of exposure assessment methodology 
may influence the effect size estimation. 

Conversely, other studies found consistent results among different 
exposure methods (McGuinn et al., 2017; Wang et al., 2015). 

Our study found consistent HR results among exposure models and 
resolution, although IQRs ranges showed some marked differences 
(5.1–16.7 and 2.5–13.6 μg/m3 for NO2 and PM10, respectively). We 
found slightly higher estimates for coarser resolution estimates of 
exposure. Common data used to feed each model (emissions for FARM 
and PMSS models, FARM results as predictor for RF model) might have 
affected such results. Furthermore, we found differences among HRs 
results when they are calculated for increments of 10 μg/m3 (see SM, 
Figure S5), particularly for models with the lower spatial resolution 
such as RF and FARM. We used increments of IQRs to compare consis-
tently HRs among the different models and we provided HRs results for 
increment of 10 μg/m3 for comparison with the correspondent literature 
values. However, the latter results might produce artefacts when 
comparing them among model, as the exposure ranges are very different 
among different models classes and resolutions (eg: PMSS, RF and 
FARM), including different levels of population exposure. In this study 
an increment of NO2 concentration of 10 μg/m3 is about twice the IQR of 
FARM model (5 μg/m3), but only 62% of the corresponding value for 
PMSS model (about 16 μg/m3). This produces differences in the corre-
sponding estimations of HRs and their confidence intervals. 

Our study has some strengths. First, this is the first long-term 
epidemiological study that uses an air dispersion model which in-
cludes the effect of flow around the buildings to assess the exposure with 
higher accuracy. This is particularly important considering the low 
dispersion conditions determined by the city’s structure (e.g. street 
canyons and larger surface roughness caused by the presence of build-
ings, etc.), which might cause accumulation of pollutants. The spatial 
smoothing at different buffer sizes allowed evaluating not only the ef-
fects of the exposure at the residential address (4m data), but also the 
surroundings level. Hot spots produced by the urban structures can 
consequently be considered in the assessment of health effects. 

Second, this study gave the opportunity to compare exposure results 
using this micro-scale approach with those provided by state of art 
methods like machine learning and CTM ones. 

Third, an important aspect of this study is the comparison of health 
effects estimated from different types of exposure models. All these 
models have different approaches in estimating exposure, with different 

Fig. 3. Adjusted HRs for increments corresponding to IQR by model resolution for NO2 natural mortality.  
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spatial resolutions and computational resources. Comparing HRs among 
such exposure data provides an added value to this study. 

This work has some limitations. It included a portion of the whole 
city of Rome and, consequently, the full RoLS cohort population was not 
involved. This could limit its representativeness over the whole city, 
although both the study area and the resident population were chosen to 
keep differences as low as possible. In addition, the RoLS is a cohort built 
on administrative data and information on individual risk factors such as 
smoking habit, diet, alcohol consumption, BMI and obesity were not 
available. We adjusted for small-area socioeconomic position, which 
might be a predictor of smoking habits. In addition, the incomplete 
availability of occupational risk factors should be considered as respi-
ratory and cardiovascular mortality are correlated with traditional and 
recently recognized work related risk factors (Wang et al., 2018; 
Kivimäki et al., 2006, 2015); respiratory mortality is significantly 
correlated with different occupations and jobs (GBD, 2016). 

5. Conclusions 

Our study provided pollutants exposure estimations using different 
methods from very fine (4m) to coarse (1 km) spatial resolutions for a 
portion (12 × 12 km2) of the city of Rome. Despite the differences in 
both the spatial details of the estimated pollutants maps provided by the 
models used, and the distribution of the cohort population exposure, the 
effect estimates for NO2 and PM10 exposure at the RoLS residential ad-
dresses for non-accidental and cardiovascular mortality were consistent 
among the exposure models when they are calculated for increment of 
IQR. In particular, the effect of buildings in the assessment of exposure 
did not seem to impact on estimation of long-term health effects. 
However, the variation of effect estimates when using fixed increments 
are noteworthy and should be considered for external comparisons and 
impact assessment. 
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