23 research outputs found

    Ferricytochrome c Directly Oxidizes Aminoacetone to Methylglyoxal, a Catabolite Accumulated in Carbonyl Stress

    Get PDF
    Age-related diseases are associated with increased production of reactive oxygen and carbonyl species such as methylglyoxal. Aminoacetone, a putative threonine catabolite, is reportedly known to undergo metal-catalyzed oxidation to methylglyoxal, NH4+ ion, and H2O2 coupled with (i) permeabilization of rat liver mitochondria, and (ii) apoptosis of insulin-producing cells. Oxidation of aminoacetone to methylglyoxal is now shown to be accelerated by ferricytochrome c, a reaction initiated by one-electron reduction of ferricytochrome c by aminoacetone without amino acid modifications. the participation of O-2(center dot-) and HO center dot radical intermediates is demonstrated by the inhibitory effect of added superoxide dismutase and Electron Paramagnetic Resonance spin-trapping experiments with 5,5'-dimethyl-1-pyrroline-N-oxide. We hypothesize that two consecutive one-electron transfers from aminoacetone (E-0 values = -0.51 and -1.0 V) to ferricytochrome c (E-0 = 0.26 V) may lead to aminoacetone enoyl radical and, subsequently, imine aminoacetone, whose hydrolysis yields methylglyoxal and NH4+ ion. in the presence of oxygen, aminoacetone enoyl and O-2(center dot-) radicals propagate aminoacetone oxidation to methylglyoxal and H2O2. These data endorse the hypothesis that aminoacetone, putatively accumulated in diabetes, may directly reduce ferricyt c yielding methylglyoxal and free radicals, thereby triggering redox imbalance and adverse mitochondrial responses.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)INCT Processos Redox em Biomedicina (Brazil)Univ São Paulo, Dept Bioquim, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Bioquim & Biol Mol, São Paulo, BrazilUniversidade Federal de São Paulo, Inst Ciencias Ambientais Quim & Farmaceut, São Paulo, BrazilUniv São Paulo, Dept Fis & Informat, São Paulo, BrazilUniv Fed ABC, Ctr Ciencias Nat & Humanas, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Bioquim & Biol Mol, São Paulo, BrazilUniversidade Federal de São Paulo, Inst Ciencias Ambientais Quim & Farmaceut, São Paulo, BrazilWeb of Scienc

    Two-year outcomes in de novo renal transplant recipients receiving everolimus-facilitated calcineurin inhibitor reduction regimen from TRANSFORM study

    Get PDF
    TRANSFORM was a 24-month, prospective, open-label trial in 2037 de novo renal transplant recipients (RTxRs) randomized (1:1) within 24 hours of transplantation to receive everolimus (EVR) with reduced-exposure calcineurin inhibitor (EVR+rCNI) or mycophenolate with standard-exposure CNI (MPA+sCNI). Consistent with previously reported 12-month findings, noninferiority of the EVR+rCNI regimen for the primary endpoint of treated biopsy-proven acute rejection (tBPAR) or estimated glomerular filtration rate (eGFR) <50 mL/min/1.73 m2 was achieved at Month 24 (47.9% vs 43.7%; difference = 4.2%; 95% confidence interval [CI] = -0.3, 8.7; P = 0.006). Mean eGFR was stable up to Month 24 (52.6 vs 54.9 mL/min/1.73m2 ) in both arms. The incidence of de novo donor-specific antibodies (dnDSA) was lower in the EVR+rCNI arm (12.3% vs 17.6%) among on-treatment patients. Although discontinuation rates due to adverse events were higher with EVR+rCNI (27.2% vs 15.0%), rates of cytomegalovirus (2.8% vs 13.5%) and BK virus (5.8% vs 10.3%) infections were lower. Cytomegalovirus infection rates were significantly lower with EVR+rCNI even in the D+/R- high-risk group (P<0.0001). In conclusion, the EVR+rCNI regimen offers comparable efficacy and graft function with low tBPAR and dnDSA rates and significantly lower incidence of viral infections relative to standard-of-care up to 24 months. This article is protected by copyright. All rights reserved

    Acetyl Radical Production by the Methylglyoxal-Peroxynitrite System: A Possible Route for L-Lysine Acetylation

    No full text
    Methylglyoxal is an a-oxoaldehyde putatively produced in excess from triose phosphates, aminoacetone, and acetone in some disorders, particularly in diabetes. Here, we investigate the nucleophilic addition of ONOO(-), known as a potent oxidant and nucleophile, to methylglyoxal, yielding an acetyl radical intermediate and ultimately formate and acetate ions. The rate of ONOO(-) decay in the presence of methylglyoxal [k(2,app) = (1.0 +/- 0.1) x 10(3) M(-1) s(-1); k(2) approximate to 1.0 x 10(5) M(-1) s(-1)] at pH 7.2 and 25 degrees C was found to be faster than that reported with monocarbonyl substrates (k(2) < 10(3) M(-1) diacetyl (k(2) = 1.0 x 10(4) M(-1) s(-1)), or CO(2) (k(2) = 3-6 x 10(4) M(-1) s(-1)). The pH profile of the methylglyoxal peroxynitrite reaction describes an ascendant curve with an inflection around pH 7.2, which roughly coincides with the pK(a) values of both ONOOH and H(2)PO(4)(-) ion. Electron paramagnetic resonance spin trapping experiments with 2-methyl-2-nitrosopropane revealed concentration-dependent formation of an adduct that can be attributed to 2-methyl-2-nitrosopropane-CH(3)CO(center dot) (a(N) = 0.83 mT). Spin trapping with 3,5-dibromo-4-nitrosobenzene sulfonate gave a signal that could be assigned to a methyl radical adduct [a(N) = 1.41 mT; a(H) = 1.35 mT; a(H(m)) = 0.08 mT]. The 2-methyl-2-nitrosopropane-CH(3)CO(center dot) adduct could also be observed by replacement of ONOO(-) with H(2)O(2), although at much lower yields. Acetyl radicals could be also trapped by added L-lysine as indicated by the presence of W-acetyl-L-lysine in the spent reaction mixture. This raises the hypothesis that ONOO(-)/H(2)O(2) in the presence of methylglyoxal is endowed with the potential to acetylate proteins in post-translational processes.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Instituto Nacional de Ciencia e Tecnologia (INCT) RedoxomaInstituto Nacional de Ciencia e Tecnologia (INCT) Redoxom
    corecore