42 research outputs found

    Analytical techniques in pharmaceutical analysis: A review

    Get PDF
    AbstractThe development of the pharmaceuticals brought a revolution in human health. These pharmaceuticals would serve their intent only if they are free from impurities and are administered in an appropriate amount. To make drugs serve their purpose various chemical and instrumental methods were developed at regular intervals which are involved in the estimation of drugs. These pharmaceuticals may develop impurities at various stages of their development, transportation and storage which makes the pharmaceutical risky to be administered thus they must be detected and quantitated. For this analytical instrumentation and methods play an important role. This review highlights the role of the analytical instrumentation and the analytical methods in assessing the quality of the drugs. The review highlights a variety of analytical techniques such as titrimetric, chromatographic, spectroscopic, electrophoretic, and electrochemical and their corresponding methods that have been applied in the analysis of pharmaceuticals

    Topical nanoemulsion of turmeric oil for psoriasis: characterization, ex vivo and in vivo assessment

    Get PDF
    Psoriasis is a chronic; T lymphocyte mediated autoimmune inflammatory disorder characterized by well-defined erythematous (reddish) plaques with large adherent silvery scales that affects the skin and other parts of the body. The essential oil in turmeric is anti-inflammatory and effective in treating chronic disorders like psoriasis that have inflammation as a root symptom. Nanoemulsions are isotropic, thermodynamically stable transparent (or translucent) systems of oil, water, surfactant and co-surfactant with a droplet size usually in the range of 20–200 nm. Their long-term stability and ease of preparation (spontaneous emulsification) make it promising tool for drug delivery. The aim of this study was to obtain nanoemulsions of turmeric oil for psoriasis and to evaluate their physical stability, irritation potential and in vivo inflammatory activity. For the preparation of nanoemulsion titration method was used which was composed of 15% turmeric oil, 42 % Smix (1:1) and 43 % distilled water. The nanoemulsion was stable during the period of study and was found to be practically non-irritating in the organotypic HET-CAM model. The anti inflammatory activity of optimized nonoemulsion was carried out by carragennen induced paw edema and found to be 70.35 % inhibition

    Optimization of bromate adsorption onto Fe-CNTs nanocomposite using response surface methodology

    Get PDF
    This study was aimed at employing response surface methodology (RSM) for optimization of process variables and identifying optimal conditions for the adsorption of bromate (BrO3-) from contaminated water using multi-walled carbon nanotubes, based on iron hydr(oxide), Fe-CNTs nanocomposite. Fifteen experimental runs were conducted in batch mode to study the effect of individual as well as interactive process variables,  i.e., pH, BrO3− initial concentration, and adsorbent dose, on the removal of BrO3− using Box–Behnken design (BBD) of RSM. The coefficient of determination (R2) at 98.34% indicated a good agreement between actual and predicted values. The main effect and contour plot were drawn to obtain the independent and interactive effect of operational variables on BrO3− uptake. A process optimization curve was drawn to determine the optimum operating conditions that lead to a desirable response. The optimum conditions for BrO3− adsorption using Fe-CNTs nanocomposite were found to be pH 2.0, initial BrO3− concentration of 10.0 mg/L, and adsorbent dose of 0.010 g per 50 mL solution

    Bioremediation and Electricity Generation by Using Open and Closed Sediment Microbial Fuel Cells

    Get PDF
    The industrial contamination of marine sediments with mercury, silver, and zinc in Penang, Malaysia was studied with bio-remediation coupled with power generation using membrane less open (aerated) and closed (non-aerated) sediment microbial fuel cells (SMFCs). The prototype for this SMFC is very similar to a natural aquatic environment because it is not stimulated externally and an oxygen sparger is inserted in the cathode chamber to create the aerobic environment in the open SMFC and no oxygen supplied in the closed SMFC. The open and closed SMFCs were showed the maximum voltage generation 300.5 mV (77.75 mW/m2) and 202.7 mV (45.04 (mW/m2), respectively. The cyclic voltammetry showed the oxidation peak in open SMFCs at +1.9 μA and reduction peak at -0.3 μA but in closed SMFCs oxidation and reduction peaks were noted at +1.5 μA and -1.0 μA, respectively. The overall impedance (anode, cathode and solution) of closed SMFCs was higher than open SMFCs. The charge transfer impedance showed that the rates of substrate oxidation and reduction were very low in the closed SMFCs than open SMFCs. The Nyquist arc indicated that O2 act as electron acceptor in the open SMFCs and CO2 in the closed SMFCs. The highest remediation efficiency of toxic metals [Hg (II) ions, Zn (II) ions, and Ag (I) ions] in the open SMFCs were 95.03%, 86.69%, and 83.65% in closed SMFCs were 69.53%, 66.57%, and 65.33%, respectively, observed during 60–80 days. The scanning electron microscope and 16S rRNA analysis showed diverse exoelectrogenic community in the open SMFCs and closed SMFCs. The results demonstrated that open SMFCs could be employed for the power generation and bioremediation of pollutants

    Comparative Investigation of the Physicochemical Properties of Chars Produced by Hydrothermal Carbonization, Pyrolysis, and Microwave-Induced Pyrolysis of Food Waste

    Get PDF
    This work presents a comparative study of the physicochemical properties of chars derived by three thermochemical pathways, namely: hydrothermal carbonization, HTC (at 180, 200 and 220 °C), pyrolysis, PY, (at 500, 600 and 700 °C) and microwave assisted pyrolysis, MW (at 300, 450 and 600 W). The mass yield of HTC samples showed a decrease (78.7 to 26.7%) as the HTC temperature increased from 180 to 220 °C. A similar decreasing trend in the mass yield was also observed after PY (28.45 to 26.67%) and MW (56.45 to 22.44%) of the food waste mixture from 500 to 700 °C and 300 to 600 W, respectively. The calorific value analysis shows that the best among the chars prepared by three different heating methods may be ranked according to the decreasing value of the heating value as: PY500, MW300, and HTC180. Similarly, a decreasing trend in H/C values was observed as: PY500 (0.887), MW300 (0.306), and HTC180 (0.013). The scanning electron microscope (SEM) analyses revealed that the structure of the three chars was distinct due to the different temperature gradients provided by the thermochemical processes. The results clearly show that the suitable temperature for the HTC and PY of food waste was 180 °C and 500 °C, respectively, while the suitable power for the MW of food waste was 300 WFunding: This research was funded by National Plan for Science, Technology and Innovation (MAAR-IFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia, Award Number 14-ENV665-02.Scopu

    Physicochemical properties and combustion kinetics of food waste derived hydrochars

    Get PDF
    In this work, simulated food waste (15% white bread, 15% palm dates (without seeds), 5% boiled egg (without shells), 20% spent tea leaves, 20% spent coffee ground, and 25% banana peel in parts weight) was subjected to hydrothermal carbonization (HTC) at 180, 200 and 220 °C for 120 min. The mass yield and energy yield of the resultant hydrochars viz. HTC180, HTC200, and HTC220 were 69.46, 68.50, 65.35% and 88.91, 87.68, 84.30%, respectively. Among the hydrochars produced, HTC220 had the highest heating value (HHV: 23.61 MJ/kg), while the food waste had a HHV of 18.17 MJ/kg. Activation energy for the combustion of food waste and HTC220 was determined by modelling the thermogravimetric data using the Arrhenius equation and was found to be in the range of 29.98 to 33.51 kJ/mol and 16.52 to 25.47 kJ/mol, respectively. The densification ratio for the three hydrochar samples varied slightly (1.28–1.29). The results indicate that the hydrochar produced from food waste could be a potential to substitute coal combustion.King Abdulaziz City for Science and Technology - grant no. 14-ENV665-02

    PLC Virtualization and Software Defined Architectures in Industrial Control Systems

    Get PDF
    Today’s automation systems are going through a transition called Industry 4.0, referring to the Fourth Industrial Revolution. New concepts, such as cyber-physical systems, mi-croservices and Smart Factory are introduced. This brings up the question of how some of these new technologies can be utilized in Industrial Control Systems. Machines and production lines are nowadays controlled by hardware PLCs and this is considered as a state-of-the-art solution. However, the market demands are continuously increasing and pushing the industry e.g. to lower the operational costs and to develop more agile solutions. Industry 4.0 provides promising approaches to take a step forward and consider PLC virtualization. The purpose of this thesis was to evaluate PLC virtualization possibilities using different Software Defined Architectures. Requirements and benefits of different solutions were evaluated. The major objective of the case study was to compare container- and hypervisor-based virtualization solutions using Docker and KVM. The case study provides a modular and scalable IIoT solution in which a virtual PLC takes over the control instead of a hardware PLC. Node-RED was used as a runtime environment and an I/O-module was needed to set up a control loop test. Response time of the control loop was measured by capturing Modbus traffic with tcpdump. Multiple iterations were performed to show minimum, maximum, average, median and 90th pctl. latencies. The results indicate that the container-based solution has a smaller overhead than the hypervisor-based solution and it has a very little overhead in general. Peak latencies are a concern and even the average latencies show that this solution would not be suitable for any hard real-time or safety-related applications. Further investigation on the topic would be needed to estimate the actual potential of PLC virtualization on hard real-time applications. First of all, a more powerful hardware PC would be needed to perform such tests. Secondly, a faster industrial protocol than Modbus TCP/IP would be required. Perhaps another kind of approach would be needed to overcome the issues that were experienced in this case study. It would be interesting to test a direct communication between virtual PLC and I/O and use Node-RED nodes for example to trigger inputs. Anyhow, it seems that container-based solution is holding much promise as a virtualization approach

    Polyaniline modified organic–inorganic hybrid cation-exchange membranes for the separation of monovalent and multivalent ions

    No full text
    Organic–inorganic hybrid cation-exchange membranes (CEMs) were chemically modified by in situ polymerization of aniline in acidic medium using FeCl3 as an oxidizing agent. The presence of polyaniline (PANI) on the surface and inside membrane matrix was confirmed from PANI coating density and scanning electron microscopy. Membranes were characterized in details by estimating water uptake, ion-exchange capacity, fixed ion concentration, counter-ion transport number and membrane conductivity. The values of Na+ transport number across the membranes were unchanged, whereas the values of Zn2+ and Al3+ transport number were decreased after modification with PANI. The dense nature of PANI modified membranes was evaluated through an electro-osmotic study. The selectivity of PANI modified membranes towards Na+, Zn2+ and Al3+ ions was investigated by electrodialysis using single or binary mixture of electrolyte solutions (Na+/Zn2+ and Na+/Al3+). The current and separation efficiencies of CEM and PANI modified membrane (CEM/PANI-120) for Na+, Zn2+ and Al3+ were determined at varied applied current densities and electrolyte solution feed concentrations. The obtained values of current and separation efficiencies for CEM/PANI-120 membrane suggested the suitability of PANI modified membrane in electrodialysis selective separation of Na+ from the binary mixture (Na+/Zn2+ and Na+/Al3+) in aqueous solutions. [Display omitted] •PANI modified organic–inorganic hybrid cation-exchange membranes were fabricated.•The developed CEM/PANI hybrid membranes were dense and thermally stable.•The selectivity of PANI modified CEM/PANI membranes was enhanced.•The electrodialytic separation of Na+ from Na+/Zn2+ and Na+/Al3+ mixture solutions was achieved
    corecore