27,801 research outputs found

    The COREL and W12SC3 computer programs for supersonic wing design and analysis

    Get PDF
    Two computer codes useful in the supersonic aerodynamic design of wings, including the supersonic maneuver case are described. The nonlinear full potential equation COREL code performs an analysis of a spanwise section of the wing in the crossflow plane by assuming conical flow over the section. A subsequent approximate correction to the solution can be made in order to account for nonconical effects. In COREL, the flow-field is assumed to be irrotional (Mach numbers normal to shock waves less than about 1.3) and the full potential equation is solved to obtain detailed results for the leading edge expansion, supercritical crossflow, and any crossflow shockwaves. W12SC3 is a linear theory panel method which combines and extends elements of several of Woodward's codes, with emphasis on fighter applications. After a brief review of the aerodynamic theory used by each method, the use of the codes is illustrated with several examples, detailed input instructions and a sample case

    Polynomial Response Surface Approximations for the Multidisciplinary Design Optimization of a High Speed Civil Transport

    Get PDF
    Surrogate functions have become an important tool in multidisciplinary design optimization to deal with noisy functions, high computational cost, and the practical difficulty of integrating legacy disciplinary computer codes. A combination of mathematical, statistical, and engineering techniques, well known in other contexts, have made polynomial surrogate functions viable for MDO. Despite the obvious limitations imposed by sparse high fidelity data in high dimensions and the locality of low order polynomial approximations, the success of the panoply of techniques based on polynomial response surface approximations for MDO shows that the implementation details are more important than the underlying approximation method (polynomial, spline, DACE, kernel regression, etc.). This paper surveys some of the ancillary techniques—statistics, global search, parallel computing, variable complexity modeling—that augment the construction and use of polynomial surrogates

    Klee sets and Chebyshev centers for the right Bregman distance

    Get PDF
    We systematically investigate the farthest distance function, farthest points, Klee sets, and Chebyshev centers, with respect to Bregman distances induced by Legendre functions. These objects are of considerable interest in Information Geometry and Machine Learning; when the Legendre function is specialized to the energy, one obtains classical notions from Approximation Theory and Convex Analysis. The contribution of this paper is twofold. First, we provide an affirmative answer to a recently-posed question on whether or not every Klee set with respect to the right Bregman distance is a singleton. Second, we prove uniqueness of the Chebyshev center and we present a characterization that relates to previous works by Garkavi, by Klee, and by Nielsen and Nock.Comment: 23 pages, 2 figures, 14 image

    Body and canard effects on an attached-flow maneuver wing at Mach 1.62

    Get PDF
    A wing-body-canard configuration was tested at a Mach number of 1.62 by using both a cambered and an uncambered wing. The cambered wing was designed to produce efficient high lift by using attached supercritical crossflow and was originally tested as an isolated wing. The uncambered wing has the same planform and essentially the same thickness distribution as the cambered wing. The experiment determined the effects of a body and canards on both wings. The experimental data showed that both the body and the canards influenced the wing pressure levels, but that the attached supercritical crossflow, which was achieved in the isolated cambered-wing test, was maintained in the presence of a body and canards. Tables of experimental pressure, force, and moment data are included, as well as photographs of oil flow patterns on the upper surface

    Supersonic, nonlinear, attached-flow wing design for high lift with experimental validation

    Get PDF
    Results of the experimental validation are presented for the three dimensional cambered wing which was designed to achieve attached supercritical cross flow for lifting conditions typical of supersonic maneuver. The design point was a lift coefficient of 0.4 at Mach 1.62 and 12 deg angle of attack. Results from the nonlinear full potential method are presented to show the validity of the design process along with results from linear theory codes. Longitudinal force and moment data and static pressure data were obtained in the Langley Unitary Plan Wind Tunnel at Mach numbers of 1.58, 1.62, 1.66, 1.70, and 2.00 over an angle of attack range of 0 to 14 deg at a Reynolds number of 2.0 x 10 to the 6th power per foot. Oil flow photographs of the upper surface were obtained at M = 1.62 for alpha approx. = 8, 10, 12, and 14 deg

    Gastric perforation and pancreatitis manifesting after an inadvertent nissen fundoplication in a patient with superior mesenteric artery syndrome.

    Get PDF
    Superior mesenteric artery (SMA) syndrome is an uncommon but well-recognized clinical entity. It can lead to proximal small bowel obstruction and severe morbidity and mortality in lieu of late diagnosis and concomitant existing comorbidities. We report a 54-year-old female, with SMA syndrome which manifested itself after Nissen fundoplication along with two major complications. The diagnosis of SMA was established by clinical symptoms and radiological findings

    Improving Learning Performance by Applying Economic Knowledge

    Get PDF
    Digital information economies require information goods producers to learn how to position themselves within a potentially vast product space. Further, the topography of this space is often nonstationary, due to the interactive dynamics of multiple producers changing their position as they try to learn the distribution of consumer preferences and other features of the problem's economic structure. This presents a producer or its agent with a difficult learning problem: how to locate profitable niches in a very large space. In this paper, we present a model of an information goods duopoly and show that, under complete information, producers would prefer not to compete, instead acting as local monopolists and targeting separate niches in the consumer population. However, when producers have no information about the problem they are solving, it can be quite difficult for them to converge on this solution. We show how a modest amount of economic knowledge about the problem can make it much easier, either by reducing the search space, starting in a useful area of the space, or introducing a gradient. These experiments support the hypothesis that a producer using some knowledge of a problem's (economic) structure can outperform a producer that is performing a naive, knowledge-free form of learning.
    corecore