research

Supersonic, nonlinear, attached-flow wing design for high lift with experimental validation

Abstract

Results of the experimental validation are presented for the three dimensional cambered wing which was designed to achieve attached supercritical cross flow for lifting conditions typical of supersonic maneuver. The design point was a lift coefficient of 0.4 at Mach 1.62 and 12 deg angle of attack. Results from the nonlinear full potential method are presented to show the validity of the design process along with results from linear theory codes. Longitudinal force and moment data and static pressure data were obtained in the Langley Unitary Plan Wind Tunnel at Mach numbers of 1.58, 1.62, 1.66, 1.70, and 2.00 over an angle of attack range of 0 to 14 deg at a Reynolds number of 2.0 x 10 to the 6th power per foot. Oil flow photographs of the upper surface were obtained at M = 1.62 for alpha approx. = 8, 10, 12, and 14 deg

    Similar works