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ABSTRACT
Digital information economies require information goods producers
to learn how to position themselves within a potentially vast prod-
uct space. Further, the topography of this space is often nonstation-
ary, due to the interactive dynamics of multiple producers changing
their position as they try to learn the distribution of consumer prefer-
ences and other features of the problem’s economic structure. This
presents a producer or its agent with a difficult learning problem:
how to locate profitable niches in a very large space.

In this paper, we present a model of an information goods duopoly
and show that, under complete information, producers would prefer
not to compete, instead acting as local monopolists and targeting
separate niches in the consumer population. However, when pro-
ducers have no information about the problem they are solving, it
can be quite difficult for them to converge on this solution. We show
how a modest amount of economic knowledge about the problem
can make it much easier, either by reducing the search space, start-
ing in a useful area of the space, or introducing a gradient. These ex-
periments support the hypothesis that a producer using some knowl-
edge of a problem’s (economic) structure can outperform a producer
that is performing a naive, knowledge-free form of learning.

1. INTRODUCTION
Recent advances in networked information technology have led

to the emergence of a digital economy. This is an economy in which
digital goods, in particular information goods, are traded online. In
some areas of the information economy, some of the participants
are computational agents. In these environments, a producer of in-
formation goods is faced with a potentially daunting problem: how
to position itself within a large and dynamic product space.

The large product space is in many ways a result of the charac-
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teristics of digital information goods. They can be unbundled and
re-bundled to create different products. In addition to a pre-defined
“newspaper”, a producer can sell the whole news collection, cate-
gories of articles, individual articles, graphics, data tables, etc. Dig-
ital goods typically have low marginal cost: once the first copy is
produced, subsequent copies can be reproduced essentially for free.
This makes bundling of goods a particularly attractive strategy [7].
The effect of unbundling and re-bundling is to exponentially prolif-
erate possible product configurations.

In addition, the economy is likely to be highly dynamic. First,
the enormous size of the product configuration space implies that
producers will need to search for good configurations. If there are
competing producers also searching, then a second dynamic is in-
troduced, since the path followed by competitors will affect profits
and learning for a producer. Third, the composition of the con-
sumer population or the preferences of individual consumers may
be nonstationary. These factors imply that firms must engage in ac-
tive learning in order to determine what to offer and what price to
charge. It is thus important to understand the system’s dynamics, in
addition to its equilibria.

In this paper, we consider the problem of competing informa-
tion producers positioning their offerings when faced with a het-
erogeneous consumer population. We focus on the role that eco-
nomic knowledge can play in reducing the producers’ search bur-
den. When producers must simultaneously learn what to offer and
how to price it, the naive learning problem becomes very diffi-
cult. However, if producers use even a limited amount of economic
knowledge, they can sharply reduce the difficulty of each learning
problem, locating a profitable niche and extracting a significant frac-
tion of the equilibrium profit.

“Economic knowledge” is a broad term, and such knowledge can
take on a variety of forms. We take the position that economic
knowledge is information that allows a producer to more effectively
or efficiently learn what good to sell or how to price a good. Much
of our research (e.g. [3]) has examined producers at either extreme
of the spectrum of knowledge. On one end, economic knowledge
can mean complete information about consumer preferences and the
strategies of all other producers. This is the classical analytic as-
sumption taken in section 3. In the other extreme, a producer has no
knowledge about the problem whatsoever. Even in this case, some
basic economic knowledge (for example, prices must be nonnega-
tive) must be built in. In this paper, we explore the space between
these two extremes, beginning with the relatively well-understood
full-information solution and then progressively weakening the in-
formation these producers have. One of our goals in this paper is to
study the way in which different sorts of economic knowledge alter
the solution space, and the resulting problem difficulty.

Other researchers have considered the problem of producers at-
tempting to locate suitable niches in a high-dimensional product
space. Chang and Harrington [4] examine the problem of multiple
stores within the same chain attempting to locate profitable niches
in ‘idea space’ and find that when consumers are sufficiently het-
erogeneous, allowing each store to learn simultaneously provides
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higher profits than a centralized search.
Several researchers, including ourselves, have studied the prob-

lem of “zero-knowledge” agents, meaning agents that learn without
taking advantage of the economic aspects of the learning problem.
Our previous work examined zero-knowledge monopolists trading
off the precision of a price schedule against the difficulty of learn-
ing that schedule [3] and zero-knowledge duopolists attempting to
discover whether to compete directly or target separate niches [2].
In both cases, the learning agents did not attempt to exploit any eco-
nomic knowledge about the structure of the problem.

Kephart, et al [9], and Dasgupta and Das [6] have examined
economies in which zero-knowledge agents adaptively adjust the
prices they offer in an attempt to maximize aggregate profit. These
sorts of systems often exhibit price wars, in which producers repeat-
edly undercut each other, driving prices down to marginal cost and
profits to zero; a focus of these papers is on developing learning al-
gorithms that can avoid price wars. We argue that a relatively small
amount of economic knowledge can also serve this purpose, and that
the paucity of information available in the zero-knowledge setting
makes the learning problem overly difficult for each producer.

In this paper we analytically derive optimal producer behavior in
a full-information static environment, then use agent simulations to
study behavior in an incomplete information dynamic environment
with learning. In Section 2, we present the details of our model of
an information market. In Section 3, we derive the static equili-
brium conditions and profits, both for a monopolist and for multiple
strategic firms. Next, in Section 4, we examine the problem of zero-
knowledge duopolists learning what bundle to offer and show that
naive learning performs quite poorly. Then, in Section 5, we show
that a learning producer with even a limited amount of economic
knowledge is able to extract a significant fraction of the available
profit. Finally, Section 6 concludes.

2. MODELING
In this section, we present our model of consumer preferences,

describe the structure of the consumer population, and then charac-
terize the resulting behavior of both consumers and producers.

2.1 Consumer Preferences
We assume that there is set of Γ disjoint information categories.

Each consumer is willing to pay w for each article in her favorite
category, γ∗. All consumers agree that the relationship between
categories can be expressed by ordering them from γ1, ..., γΓ.1 We
label categories by their index. Each consumer values a fraction
k < 1 of the categories.2 We assume that values for articles in par-
ticular categories fall off linearly from γ∗. The value that consumer
j places on category γi is thus:

µj(γ) =

(

wj(1 −
2(|γi−γ∗

j |)

kjΓ
) if |γ − γ∗

j | ≤
kjΓ

2

0 otherwise
(1)

Figure 1 illustrates the value that consumers place on articles in
categories.

A bundle is a collection of articles partitioned into categories.
Bundles are useful for producers in this scenario, in that they allow
a producer to extract greater profit from a heterogeneous consumer
population. We define the size of a bundle as |B| =

PΓ
i=1 ni,

where nj is the number of articles in category j. While Equation
1 expresses the value of a single article, we wish to capture the no-
tion that large bundles can place a burden upon the consumer due
to the scarcity value of the consumer’s attention. We refer to this
as clutter cost, α(|B|). We assume that this cost function is expo-
nential (and thus convex): α(|B|) = eλ|B|. In practice producers
1That all consumers agree on the relationship between categories is
an admittedly large assumption.
2Our formulation of consumer demand is similar to that introduced
by Chuang and Sirbu [5].

w

Value

CategoryGamma*

Figure 1: Consumer valuations of articles in different cate-
gories.

may endogenously influence this cost function by providing search
and indexing features. We assume, however, that the parameter λ is
exogenous and common across all consumers.

Thus, a consumer j’s valuation for a given bundle is Vj(B) =
PΓ

γ=1 nγµj(γ) − eλ|B|.

2.2 Consumer Population Structure
We assume that w and λ are common across consumers, so a

consumer is fully specified by her values of γ∗ and k. We also
assume there are a finite number of k values, the collection of which
we denote by k̄. We call each unique pair a “niche”, and label them
by cl ≡ {γ∗

l , kl}, with l = 1, . . . , Γ × k̄. We assume that there are
the same number of consumers in each niche.

2.3 Consumer Behavior
Consumers perfectly evaluate bundles before purchase. Each pe-

riod, a consumer purchases a bundle which gives her the highest
non-negative surplus, if at least one such bundle exists. All con-
sumers in a niche purchase the same bundle except when multiple
bundles offer the highest non-negative surplus, in which case each
chooses randomly.

2.4 Producer Behavior
The producer’s goal is to maximize cumulative (discounted) prof-

its. In each period, each of M producers offers a single bundle,
which consists of a number of articles in each category and a price
for the bundle. We assume that consumers are anonymous; produc-
ers are unable to identify which consumers have purchased. Instead,
they only receive an aggregate profit 3

We represent producer m’s offer as a vector of length Γ + 1,
{nm1, nm2, ..., nmΓ, pm} = {~nm, pm}, indicating the number of
articles in each category and the bundle price. The producer chooses
ni ∈ (0, n̄), where n̄ is the maximum number of articles in a cate-
gory a producer can offer,4 and chooses pi ∈ [0, p̄].5

3This assumption makes offering multiple bundles simultaneously
less appealing, since producers can wind up competing with them-
selves.
4We set this to be a non-binding constraint for any profit-
maximizing firm. For example, we can set n̄ to be the positive n
such that w ∗ n − eλ∗n = 0. For analytic convenience we assume
that the number of articles offered in a category, ni, has a contin-
uous support. Imposing an integer constraint would greatly com-
plicate the analysis and statement of results without changing their
qualitative nature.
5We set p̄ to be the maximal willingness to pay possible. As k < 1,
for any bundle size, a consumer strictly prefers a bundle consist-
ing only of articles in her most-preferred category to any other
distribution of |B|. The willingness to pay of this consumer is
V = |B|w − eλ|B|. Maximizing this value with respect to |B|,
and substituting back into the value function results in a willingness



3. FULL-INFORMATION EQUILIBRIA
In this section we characterize the solution of the firm’s product

configuration and pricing problem in a static, full-information envi-
ronment. We assume that producers know the values of Γ, w, and
λ, and know the distributions of k and γ∗. We first solve the prob-
lem for a monopolist, and then characterize the pure-strategy 6 Nash
equilibria when there are multiple complete-information firms.

3.1 One Firm Optimization
We look first at a monopolist.7 This provides insights about the

effect of consumer demand on the publisher’s incentives. The re-
sults derived for M = 1 are also useful for the analysis when
M ≥ 2.

LEMMA 1. If there is a single producing firm, then p is optimal
for ~n only if at least one niche receives zero surplus.

Proof: Assume not. Let cl receive the smallest positive surplus
from {~n, p}. By continuity of p, there exists a p̂ such that cl receives
zero surplus. With a higher price and equal demand, profits must
increase, and so {~n, p} cannot be optimal.

LEMMA 2. Assuming k̄ ≥ 2, if {~n, p} is the optimal offering
for a monopolist, then at least 2 niches receive zero surplus.

Proof: By Lemma 1, we know that at least one niche must receive
zero surplus. We show that at least one other niche must receive
zero surplus.

Assume that nj < |B| and that the only zero-surplus niche has
γ∗ = γj . By continuity of n, we can reallocate ε articles from γi

to a category closer or equal to γj , for ε small. As this increases
the surplus of γ∗ = γj , p can be increased without changing total
demand, and therefore {~n, p} cannot not be optimal.

If nj = |B|, all niches with γ∗ = γj receive the same surplus,
regardless of k, and therefore receive zero surplus.

We can now characterize more completely the optimal offering
by a monopolist. We assume that there are at least 2 k values, and
from Lemma 2 we know that at least two niches receive zero net
surplus. We call the two outermost niches, ca and cb, the target
niches. We assume that the most-favored category of ca is to the
left of or the same as that of cb, or γ∗

a ≤ γ∗
b . We first show that

given two target niches, it is optimal for the firm to restrict itself to
choosing amongst a subset of bundle distributions, i.e. percentages
of total articles in each category. Given that the monopolist chooses
from this subset, the revenue that it receives is a function only of
bundle size. The problem of choosing an optimal bundle and price,
conditional on a pair of target niches, thus reduces to choosing the
appropriate bundle size |B|.

At least one combination of target niches, when optimally tar-
geted, must result in the highest profit. We call this combination of
niches, c∗a and c∗b , the optimal target niches.

We start by characterizing optimal bundle distributions given a
pair of target niches.

LEMMA 3. If {~n, p} is optimal for a monopolist conditional on
Vca =Vcb

=0, then ni =0∀ γi <γa and γi >γb.

Proof: Assume not, and that ni = 0 for all γi < γa. Let γk be
rightmost category with nk > 0. By continuity of ni, reallocating
ε from γk to γk−1 increases the surplus of ca and cb to p̂. Only
those with γ∗ ≥ γk are worse off. All of these niches received

to pay equal to p̄ =
w(log( w

λ
)−1)

λ
.

6We have not analyzed the mixed-strategy solutions for this prob-
lem; this remains a topic for future work.
7We assume, for analytical convenience, that optimal bundles are
not constrained by the number of categories. That is, if consumers
in niche with γ∗ = Γ purchase, she would not change her offering
to attract consumers withγ∗Γ + 1, if they existed.

positive surplus if they purchased the original bundle. Therefore,
p= p̂ strictly increases profits as all niches with positive surplus at
{~n, p} still have non-negative surplus. Therefore,{~n, p} could not
have been optimal.

Thus by Lemma 3, conditional on particular niches receiving zero
surplus, only bundles where no articles are to the outside of either
niche can be optimal. We now show that the set of all “interior” bun-
dles which deliver zero surplus to the target niches are characterized
by the mean category of the bundle, γ̄ ≡

PΓ
i=1 γi

ni

|B|
, and show for

which niches this characterization, together with the bundle size, is
sufficient to determine gross surplus.

LEMMA 4. If ni = 0 for all i < γ∗ (i > γ∗) then Vj(B) +

eλ|B| = |B|w(1 − γ̄−γ∗

kjΓ
) (= |B|w(1 − γ∗−γ̄

kjΓ
)).

Proof: We show that this is true for if ni = 0 for all i < γ∗. The
proof when ni = 0 for all i > γ∗ is analogous.

As all articles are to the right of the consumer:

Vj(B) + eλ|B| =
Γ

X

i=γ∗

j

niw

„

1 −
2(γi − γ∗

j )

kjΓ

«

=

Γ
X

i=γ∗

j

niw +

Γ
X

i=γ∗

j

2wniγ
∗

kjΓ
−

Γ
X

i=γ∗

j

2wniγi

kjΓ

= |B|w +
2w|B|γ∗

kjΓ
−

2w|B|γ̄

kjΓ

= |B|w

„

1 −
2(γ̄ − γ∗)

kjΓ

«

, (2)

using the definition of γ̄ and
P

ni = |B| on the third line.
Lemma 4 shows that assuming that all articles in a bundle are on

one side of a niche’s γ∗, that niche’s value of that bundle depends
only on the size of the bundle and the mean category. By Lemma
3, this result applies to the target niches. Our next result shows that
for given target niches, there is a unique mean bundle category (γ̄)
that satisfies Vca(B) = Vcb

(B).

LEMMA 5. If ni = 0 for all γi < γa and all γi > γb, then
Vca(B) = Vcb

(B) if and only if γ̄ = γa+(γb − γa) 1/(kaΓ)
1/(kaΓ)+1/(kbΓ)

.

Proof: First, if γ∗
a = γ∗

b , then nγ∗

a
= |B|, and γ̄ = γ∗

a .
Now assume that γ∗

a 6= γ∗
b . By Lemma 4, γ̄ ∈ [γ∗

a, γ∗
b ]. By

Equation 2, the value of cb in increasing on this interval, and that
of ca decreasing. Therefore, if there exists a γ̄ such that Vca(γ̄) =
Vcb

(γ̄), it will be unique. To find this γ̄:

Vca(B)=Vcb
(B)

|B|w

„

1−
2(γ̄ − γ∗

a)

kaΓ

«

= |B|w

„

1 −
2(γ∗

b − γ̄)

kaΓ

«

γ̄=γa + (γb − γa) (
1

kaΓ
)(1/(

1

kaΓ
+

1

kbΓ
)),

where the final row is the result of tedious algebra.
Therefore, given two target niches,γ̄ characterizes any interior

bundle satisfying Vca(B) = Vcb
(B). By Equation 2, bundle size

alone determines value of these bundles, and thus the price. We
now show that, given two target niches receiving zero surplus, the
surplus received by niches whose γ∗ is exterior to a bundle is inde-
pendent of bundle size.

LEMMA 6. Given a bundle interior to target niches, the identity
of the two target niches, ca and cb, is sufficient to determine the
surplus of niche cd if ni = 0 for all i < (>)γ∗

d .

Proof: Assume that γ∗
d > γ̄. As surplus(cb) = 0, surplus(cd) =

surplus(cd)− surplus(cb). As prices and clutter costs will be the



same for both niches, we can simplify as follows:

surplus(cd) = |B|w

„„

1 −
2(γ∗

d − γ̄)

kdΓ

«

−

„

1 −
2(γ∗

b − γ̄)

kbΓ

««

=
2|B|w(γ̄(kb − kd) + γ∗

b kd − γ∗
dkb)

kbkdΓ
. (3)

All parameters positive by assumption, the sign of the surplus is
the same as the sign of the outer parentheses of equation 3, the sign
of which is determined solely by the niches. The proof for γ∗

d < γ̄,
using ca, is analogous.

We can thus tell a priori which niches outside of the target niches
will purchase the bundle. This is not the case for those niches for
whom γ∗ ∈ (γ∗

a, γ∗
b ). For example, if γ̄ = 3, then those niches for

whom γ∗ = 3 will certainly prefer a bundle of only category 3 to
one of the same size with half in category 2 and half in category 4.
Our next result shows that surplus of these consumers depends only
on the distribution of articles, and not the size of the bundle.

LEMMA 7. Given a bundle interior to target niches ca and cb,
the share of the bundle in each γi is sufficient to determine the sur-
plus of niche cd.

Proof: We show for γ̄ fixed and ni = 0 for all γi /∈ [γ∗
a, γ∗

b ], niche
surplus does not depend on the size of the bundle.

The share in each category is equal to si ≡ ni

|B|
. Further define

α =
Pγ∗

d
i=γ∗

a
si, γ̄l ≡

Pγ∗

d
i=γ∗

a
sini and γ̄r ≡

Pγ∗

b

i=γ∗

d
+1 sini. The

value of a bundle for any cd is:

Vcd
+ eλ|B| = |B|wα

„

1 −
2(γ∗

d − γ̄l)

kdΓ

«

+

+|B|w(1 − α)

„

1 −
2(γ̄r − γ∗

d)

kdΓ

«

= |B|w

„

1 +
2((1 − 2α)γ∗

d − γ̄r + γ̄)

kdΓ

«

where the first equation is a result of algebra similar to that in the
proof of Lemma 4 and the last line is the result of straightforward
but tedious algebra and γ̄ = αγ̄l + (1 − α)γ̄r .

Subtracting surplus(cb) = 0 from surplus(cd) gives us:

surplus(cd) =
|B|w ((γ̄ + γ∗

d − 2αγ∗
d − γ̄r) γ∗

b + (γ∗
b − γ̄)kd)

kbkdΓ
,

the sign of which is entirely determined by the sign of the outer
parentheses of the numerator, a function of the niches and the dis-
tribution of the bundle.

We can now characterize the optimal offering for a monopolist
given two target niches.

PROPOSITION 1. Given two target niches, ca and cb, the mo-
nopolist’s optimal bundle configuration solves:

max
|

B|Vca(|B|) subject to Vca(|B|) = Vcb
(|B|),

and the optimal price for the bundle is p = Vca .

Proof: Lemma 2 implies that Vca = Vcb
. Setting surplus equal to

zero, the optimal price must be p = Vca = Vcb
.

Given ca and cb, the distribution of the optimal bundle must be
of a certain form. For any offering, let the number of purchasing
niches be c#. By Lemma 3, we know all articles are interior and
are characterized by γ̄ as defined by Lemma 5. We further restrict
our subset to those distributions for which c# achieves its maximal
value on the set. This highest total demand subset is independent
of bundle size and thus price by Lemma 7.As the set for which c#

is maximal is independent of bundle size, profit is maximized by
choosing the bundle size |B| that maximizes p = Vca(|B|) and

k high + +

bundle 1 3 4 5 6bundle

0

2

0 +

+C C C

C,D

−

− −−

−

−

−

−

−: Will Not Purchase

D: Purchase depends on article distribution
C: Purchase depends on niche characteristics

0: Target Niche, Will Purchase
+: Will Purchase

k med

k low

Figure 2: Consumer demand given two targets. Each square is
a niche defined by {γ∗, k}. All articles are in categories 2,3, and
4, with a mean category of 3 and a price equal to the willingness
to pay of the targets.

allocating this bundle by any of the distributions in our non-empty
highest total demand subset.

Figure 2 demonstrates the link between characteristics of the tar-
get niche and the surplus that other niches get, regardless of bundle
size. First, note that niches with most-favored categories outside
of the target niches and smaller breadth of interest than the target
niches do not purchase the bundle. Similarly, those whose breadth
of interest is not smaller than the targets and whose ideal category is
at least as close to 3 as the targets will purchase. Those consumers
outside the targets but with higher k (denoted by C) might purchase.
Finally, we look at the niche denoted by C, D. Note that only bun-
dles of the form {0, α

2
|B|, (1 − α)|B|, α

2
|B|, 0, 0} are interior and

satisfy equality of the targets. Regardless of α, the willingness to
pay of the targets depends only upon |B|. The willingness to pay of
C, D does depend on α. At α = 0, this niche has positive surplus.
At α = 1, this niche receives negative surplus as the sum of differ-
ences between most-preferred category and bundle category is the
same as it is for the targets, yet this niche has a lower k.

Proposition 1 tells the firm how to find the optimal bundle condi-
tional on any two target niches, ca and cb. By Lemma 2, the optimal
offering for a monopolist will consist of a pair of target niches. To
find the optimal target niches, the firm can find the optimal bundle
and associated profit for each candidate pair of target niches, and
then from this set choose the bundle and price that yield the highest
overall profit.

3.2 Multi-Firm Equilibrium
In this section, we analyze multiple interacting firms. Our goal is

to characterize, to the extent possible, equilibrium outcomes.
Define the offerings of the M firms by ~N , an M × Γ matrix with

Nm,i the number of articles from firm m in category i, and ~p, a
M × 1 column vector where pm is firm m’s price. The next lemma
gives a strong characterization of any equilibrium resulting from
pure strategies.

LEMMA 8. In any pure-strategy Nash equilibrium, πi( ~N, ~p) =

πj( ~N, ~p) ∀i, j ∈ {1, 2, . . . , M}.

Proof: If πi( ~N, ~p) > πj( ~N, ~p), then j could deviate by offering
{~ni, pi − ε} for ε arbitrarily small. Therefore, { ~N, ~p} cannot be an
equilibrium.

Lemma 8 is a direct result of firms being unconstrained in the
categories in which they can offer items. We shall show that such
an equilibrium exists only if the category space is wide enough to
accommodate M local monopolists. Letting Γm correspond to the
number of γ∗-types that would be served by a monopolist, we de-
fine a local monopolist as one whose offering is optimal for Γ =
g < Γm. The next proposition gives conditions sufficient for the
existence of a multi-firm Nash equilibrium.



PROPOSITION 2. A pure strategy Nash equilibria exists if λ, w, Γ
and k̄ are such that Γm ≤ Γ

M
.

Proof: Assume a monopolist in a market characterized by the pa-
rameters would serve optimally serve no more that Γ

M
distinct γ∗-

types. Let firm i configure the optimal monopolist bundle such the
left-most niche served has γ∗ = (i − 1) ∗ Γm + 1. As all receive
the monopolist profit, none has an incentive to deviate.

We now look at the case where all firms cannot act as monop-
olists. The next two lemmas greatly restrict the space of possible
equilibria outcomes.

LEMMA 9. In no pure-strategy Nash equilibria are any con-
sumers indifferent between the offerings of the two firms.

Proof: An ε decrease in price by either firm leads to a discrete
increase in demand, as all consumers in the previously indifferent
niche now all purchase from the same firm.

LEMMA 10. In any pure-strategy Nash equilibrium, a niche gets
positive surplus from at most one producer’s offering.

Proof: Assume not. By Lemma 8, we know that all firms earn equal
profit. Let firms i and j provide positive surplus to the niche cd. By
Lemma 9, cd not indifferent. If cd purchases from j, j offering
{~ni, pi−ε} increases profits.

Therefore, all niches with the same γ∗ that purchase purchase
from the same firm, implying that each firm serves a unique sub-
set of γ∗-types. We can now provide necessary conditions for the
existence of a Nash equilibrium.

PROPOSITION 3. A pure-strategy Nash equilibrium exists only
if each firm is a local monopolist such that πi = πj ∀i, j.

Proof: By Lemma 10, each firm serves a unique subset of γ∗-types.
Given this subset, the firm selects the optimal offering. Equal profits
are by Lemma 8.

Thus the addition of firms in our environment does not lead to
firms competing over the same consumers. However, the ability to
avoid competition requires a great deal of knowledge not only about
both consumer preferences and the strategies of other firms.

4. ZERO-KNOWLEDGE LEARNING
In the previous section, we showed that the optimal strategy for

duopolist producers, when they know the distribution of consumer
preferences and understand the economic structure of the problem,
is for each to target a separate consumer niche, acting as local mo-
nopolists. We expect that firms (and their computational agents)
will not typically have complete information about the distribution
of consumer preferences, nor about the economic structure of the
problem. Therefore, we now examine what happens when the pro-
ducers are learning what bundle to offer and how to price it. We are
interested in examining whether learning producers can locate the
equilibrium solution, and in characterizing how economic knowl-
edge can and help it to locate profitable niches more easily, particu-
larly in the face of competing producers.

We model the learning of each producer using a genetic algorithm
(GA). 8 We chose to use GAs primarily because of their effective-
ness at learning in high-dimensional, nonstationary problems. GAs
are also commonly used [1, 4] to study the adaptive behavior of
agents in a multi-agent system. We cannot claim that a GA is the op-
timal algorithm for this problem, or even that the parameters or en-
coding we have chosen are ideal. Our goal is to identify the sorts of
knowledge that will help a producer locate profitable niches, given
that it has adopted a widely-used off-the-shelf learning algorithm.

8Goldberg [8] provides a comprehensive introduction to genetic al-
gorithms.
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Figure 3: Moving average of profit for zero knowledge Produc-
ers. Producers can only capture a small fraction of the surplus.

We encode the number of articles in each category as a gene. A
bundle is then represented as a chromosome: a list of the articles
in each category, plus a price, encoded as a binary string. The fit-
ness of a bundle is the profit that that bundle receives when it is
offered to the consumer population. We refer to the set of bundles
that a producer’s GA is currently evaluating as its pool. Note that
each producer is learning simultaneously; this means that each pro-
ducer’s target (the function it is optimizing) is potentially changing.
It is helpful in visualizing this learning process to realize that each
producer is learning a mixed strategy, represented by the elements
of a producer’s pool.

In the following experiments, we consider the following situa-
tion: a population of 100 consumers, with k (the fraction of cate-
gories valued) drawn uniformly from [0.2, 0.8]. |Γ = 9|. Each con-
sumer’s γ∗ is drawn from a uniform distribution, and all consumers
have valuation w = 10 for their favorite category. This leads to an
equilibrium in which each producer acts as a local monopolist, sell-
ing a bundle of 2 categories, with 113 articles in one category, 169
articles in the adjacent category, and a price of 1286. In expectation,
if k is completely uniformly distributed, each producer will earn a
profit of 36008.

We begin with the situation in which both producers are zero-
knowledge producers. Each producer begins with a pool of 50 bun-
dles in which the number of articles is drawn from [0, n̂] and the
price is drawn from [0, 2048]. In this experiment, as well as the fol-
lowing ones, n̂ is set to 128. In Section 5.5, we vary this parameter
and discuss the implications of this choice. Once the experiment
has begun, the GA allows producers to select any possible bundle
and price; a producer’s only feedback is the profit a bundle earned.
The results of this experiment are shown in Figure 3. The error
bars 95% confidence intervals for the data; that is, 95% of the data
points for that iteration fall within the indicated range. As we see
from Figure 3, when the producers are asked to locate equilibria
without any other knowledge, they fail spectacularly. There are two
potential reasons for this. First, the search space is extremely large.
If we assume that a producer can offer 256 articles in a bundle,
the maximum price is 2048, and prices are integers, then there are
2569 × 2048 ≈ 9.6 × 1022 bundles. Second, a large fraction of
these bundles produce no profit. A random sample of one million
bundles in this landscape reveals that only 55, or 0.005%, of the
bundles have non-zero profit. This leaves a learning algorithm such
as a GA, which depends upon a gradient, with little help in escaping
zero-profit plateaus and locating optima.

It seems unlikely that information goods producers would have
absolutely no knowledge of the goods they were selling or the pref-
erences of the consumer population. More likely, they would have
some (potentially uncertain) information that they could apply to
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Figure 4: Moving average of profit for perfect-information pro-
ducers with mutation. Despite large amounts of mutation, pro-
ducers are able to maintain the equilibrium solution.

their learning problem. In the following section, we examine the
consequences of applying different sorts of economic knowledge
on this learning problem.

5. INJECTING ECONOMIC KNOWLEDGE
In real markets, even those in which consumers are anonymous

and the consumer population is rapidly changing, producers typi-
cally have some knowledge about their learning problem. At the
very least, they know that their problem is an economic one, and so
it will obey some simple criteria, such as demand decreasing with
increasing price. This knowledge allows a producer to prune its
search space in a way that a knowledge-free algorithm such as a
GA, or algorithms such as amoeba, which we have used in previ-
ous work [3], cannot. This leads us to suspect that results generated
with zero-knowledge producers may be overly naive.

The experiments in this section map out some of the space be-
tween the full-information producers described in Section 3 and the
zero-knowledge producers described in Section 4. In particular, we
examine the ways in which this economic knowledge transforms a
learning producer’s search problem. There are three ways that this
can happen: this knowledge can reduce the size of the search space,
it can transform the landscape, introducing a gradient that aids adap-
tive algorithms such as GAs, or it can allow the producer to start in
a more effective region of the search space.

5.1 Equilibrium Stability
We begin with producers that have near-perfect information. In

this experiment, each producer’s pool is seeded with all elements in
the pool equal to the equilibrium solution. This provides the equiv-
alent of the perfect information used to derive the analytic results
in section 3. On every iteration, we increase the GA’s mutation rate
until it reaches 30%. This is meant to represent the situation where
producers know what they “should” do, but occasionally make mis-
takes. It is also intended to help understand the nature of the equi-
librium basin. It was not clear whether the difficulty in the zero-
knowledge case was due to the size of the search space or the struc-
ture of the equilibrium. When producers are pushed off the equili-
brium, are they able to easily return? Figure 4 shows the results of
this experiment. Once again, error bars indicate a 95% confidence
interval.9. As we see in Figure 4, the equilibrium solution is quite

9Since the experiments are conducted on a finite, randomly gen-
erated population ,it is possible that, in a particular run, the equi-
librium solution will differ slightly from the theoretical solution,
allowing producers to earn slightly more than the theoretical profit.
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Figure 5: Moving average of profit for producers with uncer-
tainty over consumer valuation for each category. Producers
are still able to capture a large fraction of equilibrium profit.

resistant to the introduction of mutation. The error bounds show
that mutation can push the producer quite far from the equilibrium
solution, yet it is able to return to the equilibrium. This implies that
the basin of attraction around the solution is quite broad; even when
producers are pushed away from it, there is a natural gradient they
can follow to return back to the equilibrium.

Another way to understand this is to consider the change in each
producer’s search space. The zero-knowledge agent searched over
all possible bundles, which produced a vast space overwhelmingly
filled with bundles that yielded zero profit. In contrast, the initial
search space here consists of one bundle: the equilibrium bundle.
As we increase the mutation rate, the GA considers more bundles,
and so the search space will grow. At its highest, the mutation rate
reaches 30%, meaning that there is a 0.3 probability that a bundle in
a producer’s pool will be mutated. In expectation, 15 new bundles
will be added to the search space every time mutation is applied. At
this rate, it would take approximately 6.6×1021 rounds of mutation,
or 3× 1023 iterations (since mutation is applied after all 50 bundles
in a pool are evaluated) to sample all possible bundles.

5.2 Uncertainty Over Consumer Valuation
In this section, we further weaken each producer’s knowledge

about the consumer population. In particular, we assume that they
no longer know exactly how many articles to sell in each category.
To achieve this, we seed each producer’s pool with copies of the
equilibrium bundle, and then apply Gaussian noise (mean 0, stan-
dard deviation 50) to the number of articles in each category for each
of the bundles in the pool. This gives a producer a pool of approx-
imate solutions. We continue to apply mutation as in the previous
experiment. The results of this experiment are shown in Figure 5.
As we can see in Figure 5, applying significant amounts of Gaussian
noise does not affect each producer’s ability to return to the equili-
brium solution. Although average profits decrease slightly, and we
see the introduction of an initial transient in which producers are
converging on a solution, the application of noise is not enough to
push producers out of the basin of attraction of the equilibrium.

In this case, we have not reduced the total search space, since
it is possible for Gaussian noise to produce any possible bundle.
Instead, each producer starts its search in a profitable area of the
search space, namely one that has a gradient. Random sampling
of one million initial bundles generated according to this procedure
shows that 27.5% of them have a non-zero profit. In a pool of 50
initial bundles, 13 of them will have non-zero profit, which provides
the GA with a sufficient gradient for learning.
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Figure 6: Moving average of profit for producers that know that
category values are arranged on a line. Lack of coordination
lowers profits slightly.

5.3 Adjacent Categories
In the previous experiment, we applied noise to each producer’s

solution, but we still seeded the producers with the proper coordi-
nation knowledge. That is, producer 1 was seeded with bundles that
tended to have large numbers of articles in category 2 and 3, and
producer 2 was seeded with bundles that tended to have large num-
bers of articles in category 7 and 8. In this experiment, we remove
that knowledge. However, we allow producers to retain the knowl-
edge that the consumer valuation of categories exist on a line, and
so they are best off offering adjacent categories.

We implement this by seeding each producer’s pool with the equi-
librium bundle and applying noise, as above, and then rotating the
categories in each bundle by a random amount. This produces a
pool in which bundles tend to have large numbers of articles in ad-
jacent categories, but the favorite category is distributed uniformly
throughout the pool. Again, mutation is applied. The results of this
experiment are shown in Figure 6. We see that the producers in this
experiment suffer a loss in profit when compared to the producers
shown in Figure 5. We have not changed the nonzero fraction of the
search space relative to the previous experiment, but we have re-
moved the initial coordination of solutions between producers. This
can create inadvertent competition. Since the producers no longer
start out in separate areas of the search space, there are cases in
which they mis-coordinate and offer the same bundle. If fact, if
each producer is choosing two adjacent categories at random, there
is a 3

8
chance that the producers will offer at least one category in

common. Given this, it would seem that the producers still seem to
do a relatively good job of coordinating, which implies that there is
a strong ‘learning gradient’ toward acting as a local monopolist.

5.4 Bundle Diversity
In the following experiment, we further weaken each producer’s

knowledge by removing the assumption that producers know that
categories are arranged on a line. Instead, we assume that they
only know the approximate diversity of the bundle; that is, how
many categories they should offer articles in. We implement this
by seeding each pool with copies of the equilibrium bundle, apply-
ing Gaussian noise, and then permuting the articles offered in each
category within each bundle. This produces a pool of bundles that
tend to have two categories that contain a large number of articles,
but which are not necessarily adjacent. The results of this experi-
ment are shown in Figure 7. The profits in this experiment are very
similar to those shown in Figure 6. This serves as an indicator that
the knowledge that categories are arranged on a line may not be
that essential to producer performance. Instead, knowing the num-
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Figure 7: Moving average of profit for producers that know
bundle diversity. Even though producers no longer know that
categories are arranged on a line, profits remain at a level con-
sistent with the previous experiment.

ber of categories to offer articles in may be a more useful piece of
knowledge. Interestingly, by removing the adjacency knowledge,
we reduce the probability that two random bundles will compete
directly (to 17

81
, or 21%). However, random sampling of one mil-

lion random bundles reveals that only 17% of them yield positive
profit. So the reduction in potential competition is canceled out by
the increasingly poor starting bundles.

5.5 Total Bundle Size
As we have pointed out, the greatest challenge that these produc-

ers face in locating a suitable bundle to offer is the incredibly large
search space. Many of the previous experiments have focused on
ways in which a producer can apply economic knowledge to reduce
the size of the search space. In this experiment, we allow each pro-
ducer to exploit economic knowledge to instead start its search in
useful areas of the search space. We do this by modifying the num-
ber of articles in each category that a producer will initially offer.
Smaller initial bundles will be more likely to yield nonzero profit,
but may potentially trap the producer in a local optimum.

In Section 4, we seeded the producers’ pools with bundles con-
taining a random number of articles in each category, where this
number was drawn from [0, n̂], with n̂ = 128. In this experiment,
we vary n̂, thereby changing the region of the search space in which
the producers can start. In Figure 8, we show the results of exper-
iments in which the number of articles in each category of a pro-
ducer’s initial bundle were drawn from [0, n̂] with n̂ set to n̂ = 25,
64, 128, 192, and 256, respectively. As we can see from this exper-
iment, starting with a smaller bundle definitely allows a producer
to achieve better profits. In addition, when n̂ becomes too large
(greater than 128), profits are either very low or zero, implying that
the producers never find their way out of zero-profit regions of the
search space. However, even a small n̂ is not enough to move the
producers all the way to the equilibrium. This implies that there are
local optima within the landscape in which producers can become
stuck. In addition, we can see that the transient is different for the
n̂ = 25 and n̂ = 64 cases. In the n̂ = 25 case, the initial bun-
dles were simply too small, and so time (and a larger number of
mutations) was needed to make the bundles large enough to extract
significant profit. Beyond n̂ = 128, most of the initial bundles oc-
cur in zero-profit areas of the landscape, and so producers do quite
poorly. This tells us that knowing something about where to start
one’s search is a useful piece of knowledge, but by itself it is not a
replacement for more detailed economic knowledge about the be-
havior of either consumers or competing producers.



0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Iteration

Average Profit per Iteration for Producers 
With Varying Maximum Initial Category Size 

P
ro

fit

Equilibrium Profit 

25 

64 

128 

256 

192 

Figure 8: Moving average of profit for producers with different
initial numbers of articles in each category. Smaller initial num-
bers of articles allow producers to locate solutions, but overly
small bundles introduce longer learning transients.

5.6 Introducing a gradient
Another way in which producers can make their search problem

easier is to transform the landscape so that it contains more of a
gradient. One way to do this is to get feedback from the consumer
population about how much they value a bundle, as opposed to only
what they purchase. This allows a producer to distinguish between
those bundles that receive zero profit because they’re slightly un-
desirable and those bundles that receive zero profit because they’re
extremely undesirable.

In this experiment, we provide producers with a gradient by al-
tering the way in which the GA assigns fitness to a bundle. Rather
than using the profit that a bundle earns, we use the valuation that
the five most-satisfied consumers assign to the bundle, even if some
or all of these are negative. 10 While the size of the search space
does not change at all, the underlying landscape is transformed, as
there are (almost) no areas of zero profit. Instead, most of the large
zero-profit plateaus will now be populated with valleys correspond-
ing to negative valuations. This provides a gradient-using algorithm
(such as a GA) with the feedback needed to learn effectively. By us-
ing only the valuations of the most-satisfied consumers, a producer
is encouraged to adapt its bundle to better satisfy those consumers
that are most inclined to buy its bundle, as opposed to consumers
who would need drastic changes in order to purchase.

One potential complication that comes from using consumer sur-
plus, rather than profit, as a measure of bundle fitness is that bun-
dles that are priced at zero will be highly valued by the consumer
(since they yield high surplus), even though they are not particu-
larly useful solutions for the producer. We avoid this problem by
fixing price for this experiment and having producers learn only
bundle contents. This solution is only partly satisfactory; a more
comprehensive approach would combine both profit and consumer
satisfaction in estimating bundle fitness.

Figure 9 shows the results of this experiment. There is still a
significant transient period when producers are searching through
low-profit areas of the landscape, but after about 400 iterations, a
producer is able (on average) to extract about 70% of the equili-
brium profit, which is a distinct improvement over the experiments
in Section 4, where a producer was unable to extract any significant
profit. As in the previous experiment, this tuning of the learning al-

10The assumption that producers can discover how negatively a bun-
dle is valued is admittedly a bit artificial, although a clever producer
might be able to estimate this quantity, either through offering re-
bates or cash to consumers, or packaging this bundle with another
good whose value is known and observing the difference in demand.
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Figure 9: Moving average of profit for producers with a gradi-
ent.

gorithm helps, but not as much as the application of specific domain
knowledge, which can be used to drastically prune the search space.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have examined the problem of producers locat-

ing in a high-dimensional information-goods product space. When
the producers have perfect information, the pure-strategy equili-
brium solution is for each producer to act as a local monopolist,
serving a separate consumer niche. However, discovering those
niches is quite difficult for naive learners, as the search space is in-
credibly large. We argue that learning agents should take advantage
of the economic knowledge implicit (and explicit) in the problem.
This can allow them to reduce the search space, transform the search
space by adding a gradient, or start in promising locations.

We have not examined one particularly useful piece of economic
knowledge: the fact that a producer is competing with other pro-
ducers. Adding a layer of reflectivity, in which the GA’s feedback
is modulated by the distance between a producer’s bundle and those
of other producers, remains a topic for future work. In addition, our
addition of gradient information could be made more sophisticated
through the introduction of a multi-objective fitness function that
weighted both profit and valuation of a bundle.
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