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Abstract

We systematically investigate the farthest distance function, farthest points, Klee sets, and Chebyshev
centers, with respect to Bregman distances induced by Legendre functions. These objects are of
considerable interest in Information Geometry and Machine Learning; when the Legendre function is
specialized to the energy, one obtains classical notions from Approximation Theory and Convex Analysis.

The contribution of this paper is twofold. First, we provide an affirmative answer to a recently-posed
question on whether or not every Klee set with respect to the right Bregman distance is a singleton. Second,
we prove uniqueness of the Chebyshev center and we present a characterization that relates to previous
works by Garkavi, by Klee, and by Nielsen and Nock.
c© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

Throughout this paper,

RJ is the standard Euclidean space with an inner product 〈·, ·〉 and induced norm ‖ · ‖. (1)
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Suppose that S is a nonempty subset of RJ such that for every point in RJ , there exists a
unique farthest point in S, where “farthest” is understood in the standard Euclidean distance
sense. Then S is said to be a Klee set, and it is known that S must be a singleton; see, e.g., [1,
17,18,20,21] for further information. (The situation in Hilbert space remains unsettled to this
day. One of the main obstacles is the possible absence of compactness of bounded closed sets in
infinite-dimensional Hilbert spaces.)

In [8], Klee sets were revisited from a new perspective by using measures fairly different from
distances induced by norms. To describe and follow up on this viewpoint, we assume throughout
that

f : RJ
→]−∞,+∞] is a convex function of Legendre type. (2)

Recall that for a convex function g : RJ
→]−∞,+∞], the (essential) domain is dom g =

{
x ∈

RJ
| g(x) ∈ R

}
and x∗ ∈ RJ is a subgradient of g at a point x ∈ dom g, written x∗ ∈ ∂g(x), if

(∀h ∈ RJ )g(x)+ 〈h, x∗〉 ≤ g(x + h); this induces the corresponding set-valued subdifferential
operator ∂g : RJ ⇒ RJ . (For basic terminology and results from Convex Analysis not stated
explicitly in this paper, we refer the reader to [9,24,26,28].) Then g is said to be essentially
smooth if g is differentiable on int dom g (the interior of its domain), and ‖∇g(x)‖ → +∞
whenever x approaches a point in the boundary bdry dom g; g is essentially strictly convex if g
is strictly convex on every convex subset of dom ∂g =

{
x ∈ RJ

| ∂g(x) 6= ∅
}
; and g is a convex

function of Legendre type – often simply called a Legendre function – if g is both essentially
smooth and essentially strictly convex. See [5,10,11,24] for further information on Legendre
functions. It will be convenient to set

U := int dom f. (3)

Many examples of Legendre functions exist; however, in this paper, we focus mainly on the
following.

Example 1.1 (Legendre Functions). The following are Legendre functions, each evaluated at a
point x ∈ RJ .

(i) (halved) energy: f (x) = 1
2‖x‖

2
=

1
2

∑
j x2

j .

(ii) f (x) = 1
2 〈x, Ax〉, where A ∈ RJ×J is symmetric and positive definite.

(iii) negative entropy: f (x) =
{∑

j

(
x j ln(x j )− x j

)
, if x ∈ RJ

+;

+∞, otherwise.

(iv) negative logarithm: f (x) =
{
−

∑
j ln(x j ), if x ∈ RJ

++;

+∞, otherwise.

Note that U = RJ in (i) and (ii), whereas U = RJ
++ in (iii) and (iv).

Legendre functions are of considerable interest to us because they give rise to a very nice mea-
sure of discrepancy between points, nowadays termed the “Bregman distance”; see, e.g., [12–14].

Definition 1.2 (Bregman Distance). The Bregman distance with respect to f , written D f or
simply D, is the function

D : RJ
× RJ

→ [0,+∞]: (x, y) 7→

{
f (x)− f (y)− 〈∇ f (y), x − y〉 , ify ∈ U ;
+∞, otherwise.

(4)
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Although well established, the term “Bregman distance” is a misnomer because a Bregman
distance is in general neither symmetric nor does it satisfy the triangle inequality. However, the
Bregman distance is able to distinguish different points in the sense (see [3, Theorem 3.7.(iv)])
that (

∀x ∈ RJ )(
∀y ∈ U

)
D(x, y) = 0⇔ x = y. (5)

Example 1.3 (Bregman Distances). The Bregman distances corresponding to the Legendre
functions of Example 1.1 between two points x and y in RJ are as follows.

(i) halved squared Euclidean distance: D(x, y) = 1
2‖x − y‖2.

(ii) halved squared Mahalanobis distance: D(x, y) = 1
2 〈x − y, A(x − y)〉.

(iii) Kullback–Leibler divergence: D(x, y) =
{∑

j

(
x j ln(x j /y j )− x j + y j

)
, if x ∈ RJ

+ and y ∈ RJ
++;

+∞, otherwise.

(iv) Itakura–Saito distance: D(x, y) =
{∑

j

(
ln(y j /x j )+ x j /y j − 1

)
, if x ∈ RJ

++ and y ∈ RJ
++;

+∞, otherwise.

See e.g. [2,3] for further examples of Bregman distances.
From now on, we assume that C is a subset of RJ such that

∅ 6= C ⊆ U. (6)

Definition 1.4 (Right Bregman Farthest-distance Function and Farthest-point Map). The right
Bregman farthest-distance function is

−→
F C : RJ

→ [0,+∞]: x 7→ sup
c∈C

D(x, c), (7)

and the corresponding right Bregman farthest-point map is
−→
Q C : RJ ⇒ RJ

: x

7→

{
argmax

c∈C
D(x, c) =

{
c ∈ C | D(x, c) =

−→
F C (x)

}
, if x ∈ dom f ;

∅, otherwise.
(8)

Observe that
−→
F C is convex and lower semicontinuous, (9)

that

dom
−→
Q C ⊆ dom

−→
F C ⊆ dom f, (10)

and that

if C is compact, then dom
−→
Q C = dom

−→
F C = dom f. (11)

We are now ready to continue the discussion on Klee sets started earlier by introducing a notion
central to this paper.

Definition 1.5 (
−→
D -Klee Set). The set C is said to be

−→
D -Klee, if for every x ∈ U ,

−→
Q C x is a

singleton.
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The asymmetry of D gives also rise to the left Bregman farthest-distance function and
associated farthest-point map and Klee sets. These objects were analyzed in [8] and are not
treated here. In fact, under additional assumptions, right and left notions may be related to each
other via duality. However, the duality approach was not powerful enough to settle the question,
raised in [8, Remark 7.3], whether or not every

−→
D -Klee set is a singleton when f does not have

full domain as is the case when D is, e.g., the Kullback–Leibler divergence or the Itakura–Saito
distance. The first contribution of this paper is to settle this question entirely, for manifestations
of f that are even more general than those considered in [8]. In fact, in Theorem 3.2 we prove
that the answer is affirmative in the present setting.

Another related line of work concerns Chebyshev centers. Again, let us start by reviewing
the classical situation in Euclidean spaces. Let S be a nonempty compact subset of RJ . The
Chebyshev center is the center of the smallest closed ball one can place in RJ that entirely
captures the set S. The Chebyshev center exists and is unique, and a classical result due to
Garkavi and Klee (see Corollary 4.5) provides a geometric characterization of it. Unlike Klee
sets, Chebyshev centers have already been investigated in the context of Bregman distances –
see, e.g., the work by Nielsen and Nock [22,23] (see Corollary 4.6) and the references therein –
however; it is assumed there that S is finite. The second contribution of this paper is to extend
the classical work in Euclidean space by Garkavi and Klee and the recent work by Nielsen and
Nock on Chebyshev centers of finite sets with respect to Bregman distances. In Theorem 4.4, we
prove existence and uniqueness for Chebyshev centers of compact sets with respect the Bregman
distance, and we present a geometric characterization of it.

The remainder of the paper is organized as follows. In Section 2 we collect and present several
results that will make the proofs of the main results more structured and easier to follow. The
main result in Section 3 is Theorem 3.2, which states that every compact

−→
D -Klee set is indeed a

singleton. In Section 4, we guarantee existence and uniqueness of the
−→
D -Chebyshev center, and

we characterize it geometrically. In Section 5, we illustrate our results with an example for three
Bregman distances.

2. Auxiliary results

In this section, we collect several results that will make the proofs of the main results easier
to follow. We start with two identities that are straightforward consequences of (4).

Lemma 2.1 (See [15, Lemma 3.1]). Let x be in RJ , and let y and z be in U. Then

D(x, z)− D(y, z) = D(x, y)+ 〈x − y,∇ f (y)−∇ f (z)〉 . (12)

Lemma 2.2 (See [6, Remark 2.5]). Let x1 and x2 be in dom f , and let y1 and y2 be in U. Then

〈x1 − x2,∇ f (y1)−∇ f (y2)〉 = D(x2, y1)+ D(x1, y2)− D(x1, y1)− D(x2, y2). (13)

Lemma 2.3. The Bregman distance D is continuous on U ×U.

Proof. This follows from [24, Theorem 10.1 and Corollary 25.5.1]. �

Fact 2.4 (Rockafellar See [24, Theorem 26.5]). The gradient operator ∇ f is a continuous bijec-
tion between U and int dom f ∗, with a continuous inverse (∇ f )−1

= ∇ f ∗. Furthermore, f ∗ is
also a convex function of Legendre type.
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Recall that a function g : RJ
→]−∞,+∞] is coercive if all its lower level sets are bounded;

equivalently, if lim‖x‖→+∞ g(x) = +∞. The following is thus clear.

If g : RJ
→]−∞,+∞] is coercive and lower semicontinuous, then argming 6= ∅. (14)

Here argming denotes the set of minimizers of g.

Fact 2.5 (See [24, Corollary 14.2.2]). Let g : RJ
→]−∞,+∞] be convex, lower semicontinu-

ous, and proper, and let x∗ ∈ RJ . Then g(·)− 〈·, x∗〉 is coercive if and only if x∗ ∈ int dom g∗.

Fact 2.6 (Ioffe–Tikhomirov See [28, Theorem 2.4.18]). Let A be a compact Hausdorff space,
let ga : RJ

→] − ∞,+∞] be convex for every a ∈ A, and set g := supa∈A ga . Assume that
(∀x ∈ RJ )A →] −∞,+∞]: a 7→ ga(x) is upper semicontinuous and that x0 ∈ dom g is a
point such that (∀a ∈ A)ga is continuous at x0. Then

∂g(x0) = conv
⋃{

a∈A|g(x0)=ga(x0)
} ∂ga(x0). (15)

The following result is a Bregman-distance version of the well known characterization of the
metric projection onto a nonempty closed convex set.

Lemma 2.7 (See [3, Proposition 3.16]). Suppose that C is closed and convex, and let y ∈ U rC.
Then there exists a unique point c̄ ∈ C such that(

∀c ∈ C
)
〈c − c̄,∇ f (y)−∇ f (c̄)〉 ≤ 0. (16)

Lemma 2.8. Suppose that C is compact, and let x ∈ U r ((∇ f ∗)(conv (∇ f (C)))). Then there
exists y ∈ (∇ f ∗)(conv (∇ f (C))) ⊂ U such that(

∀c ∈ C
)

D(x, c) ≥ D(x, y)+ D(y, c). (17)

Proof. Set S := ∇ f (C) and V := int dom f ∗ = ∇ f (U ). Since C is compact and ∇ f is con-
tinuous (Fact 2.4), the set S is compact. Using [24, Theorem 17.2], we deduce that conv S =
conv S is a nonempty proper compact subset of V . Using Fact 2.4 again, we see that

(∇ f ∗)(conv S) is a proper compact subset of U (18)

and that x∗ := ∇ f (x) ∈ V r (conv S). Applying Lemma 2.7 (to f ∗, conv S, and x∗), we obtain
a point y∗ ∈ conv S such that(

∀v ∈ conv S
) 〈

v − y∗,∇ f ∗(x∗)−∇ f ∗(y∗)
〉
≤ 0. (19)

Now set y := ∇ f ∗(y∗). Then (19) yields(
∀c ∈ C

)
〈∇ f (y)−∇ f (c), x − y〉 ≥ 0. (20)

Combining this with Lemma 2.1, we estimate(
∀c ∈ C

)
D(x, c)− D(y, c) = D(x, y)+ 〈∇ f (y)−∇ f (c), x − y〉 ≥ D(x, y), (21)

which completes the proof. �
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Let X and Y be nonempty subsets of RJ and let A : X ⇒ Y be a set-valued operator, i.e.,
(∀x ∈ X)Ax ⊆ Y . Denote the graph of A by gr A :=

{
(x, y) ∈ X × Y | y ∈ Ax

}
. We say that

A is monotone from X to Y , if(
∀(x, x∗) ∈ gr A

)(
∀(y, y∗) ∈ gr A

) 〈
x − y, x∗ − y∗

〉
≥ 0. (22)

If A is monotone from X to Y and every proper set-valued extension from X to Y is not mono-
tone, then A is maximal monotone from X to Y . If X = Y = RJ , we will simply speak of
monotone and maximal monotone operators; this is the usual and well known setting.

We now present a variant of [25, Example 12.7], which is a sufficient condition for maximal
monotonicity.

Proposition 2.9. Let S be a nonempty open subset of RJ , let Y be a subset of RJ , and let
A : S→ Y be monotone and continuous. Then A is maximal monotone from S to Y .

Proof. Suppose that (x̄, ȳ) ∈ S × Y satisfies(
∀x ∈ S

)
〈x̄ − x, ȳ − Ax〉 ≥ 0, (23)

and denote the closed unit ball in RJ by B. Then for all sufficiently small ε > 0, we have x̄ +
εB ⊆ S and hence (∀b ∈ B) 〈x̄ − (x̄ + εb), ȳ − A(x̄ + εb)〉 ≥ 0 and so 〈b, ȳ − A(x̄ + εb)〉 ≤
0. Letting ε → 0+ for fixed but arbitrary b ∈ B, and using continuity of A at x̄ , we deduce
that 〈b, ȳ − Ax̄〉 ≤ 0. Taking the supremum over b ∈ B, we obtain ‖ȳ − Ax̄‖ = 0. Hence
(x̄, ȳ) = (x̄, Ax̄) ∈ gr A, as required. �

Our first result reveals a monotonicity property of
−→
Q C . (See also [27] and [8, Proposition 7.1],

and [7], where we discuss Chebyshev sets instead of Klee sets.)

Proposition 2.10. The set-valued operator −∇ f ◦
−→
Q C : RJ ⇒ RJ is monotone.

Proof. Assume that (x, x∗) and (y, y∗) lie in gr
−→
Q C . It follows from (8) and Lemma 2.2 (applied

to x1 = x , x2 = y, y1 = y∗, and y2 = x∗) that

0 ≤
(
D(x, x∗)− D(x, y∗)

)
+
(
D(y, y∗)− D(y, x∗)

)
=
〈
x − y,∇ f (y∗)−∇ f (x∗)

〉
=
〈
x − y, (−∇ f )(x∗)− (−∇ f )(y∗)

〉
, (24)

as required. �

Proposition 2.11. Suppose that C is closed, and that ((xn, yn))n∈N is a sequence in (gr
−→
Q C ) ∩

(U × RJ ) such that (xn, yn)→ (x, y) ∈ U × RJ . Then (x, y) ∈ gr
−→
Q C .

Proof. Since ran
−→
Q C ⊆ C , the sequence (yn)n∈N lies in C and it satisfies (∀n ∈ N)D(xn, yn) =

−→
F C (xn). Because C is closed, y ∈ C ⊆ U . By Lemma 2.3, D is continuous on U × U . Alto-
gether, in view of (9), we deduce

−→
F C (x) ≤ lim

n∈N

−→
F C (xn) = lim

n∈N
D(xn, yn) = D(x, y) ≤

−→
F C (x). (25)

Therefore,
−→
F C (x) = D(x, y), i.e., y ∈

−→
Q C (x). �
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Proposition 2.12. Suppose that C ⊆ U. Then gr
−→
Q C ⊆ gr

−→
Q C .

Proof. Take (x, y) ∈ gr
−→
Q C . Then y ∈ C ⊆ C and (∀c ∈ C)D(x, y) ≥ D(x, c). Since C ⊆ U

and D(x, ·) is continuous on U (Lemma 2.3), it follows that (∀c̄ ∈ C)D(x, y) ≥ D(x, c̄). Thus,
y ∈
−→
Q C (x). �

Remark 2.13. Assume that c̄ ∈ C ∩ bdry U . In view of (6), there exists a sequence (cn)n∈N in
C ⊆ U such that cn → c̄; hence, by [3, Theorem 3.8.(i)], (∀x ∈ U )D(x, cn)→+∞. Therefore,
the assumption that C be a subset of U is very natural in Proposition 2.12 and elsewhere in this
paper.

Proposition 2.14. Suppose that (∀x ∈ dom f )D(x, ·) is convex on U. Then gr
−→
Q C ⊆ gr

−→
Q conv C .

Proof. Take (x, y) ∈ gr
−→
Q C . Then x ∈ dom f , y ∈ C ⊆ conv C , and (∀c ∈ C)D(x, c) ≤

D(x, y). Now let z ∈ conv C , say z =
∑n

i=1 λi ci , where each λi ∈ [0, 1], each ci ∈ C , and∑n
i=1 λi = 1. Then D(x, z) ≤

∑n
i=1 λi D(x, ci ) ≤

∑n
i=1 λi D(x, y) = D(x, y) and therefore

y ∈
−→
Q conv C (x). �

Proposition 2.15. Suppose that (∀x ∈ dom f )D(x, ·) is strictly convex on U. Then
−→
Q C =

−→
Q conv C .

Proof. In view of Proposition 2.14, we only need to show that gr
−→
Q conv C ⊆ gr

−→
Q C . To this end,

let (x, y) ∈ gr
−→
Q conv C . Then x ∈ dom f , y ∈ conv C , and (∀s ∈ conv C)D(x, s) ≤ D(x, y).

In particular, (∀c ∈ C)D(x, c) ≤ D(x, y). The proof is complete as soon as we have verified
that y ∈ C . Assume to the contrary that y 6∈ C . Then y =

∑n
i=1 λi ci , where n ≥ 2, each

λi > 0, each ci ∈ C , and where the ci are pairwise distinct and
∑n

i=1 λi = 1. But then
D(x, y) <

∑n
i=1 λi D(x, ci ) ≤

∑n
i=1 λi D(x, y) = D(x, y), which is absurd. �

The next result shows that when D is separately convex (see [4] for a systematic discussion of
separate and joint convexity of D), then the farthest-point distance is “blind” to the convex hull.

Proposition 2.16. Suppose that (∀x ∈ dom f )D(x, ·) is convex. Then
−→
F conv C =

−→
F C .

Proof. This follows from [24, Theorem 32.2]. �

The following result was motivated by a question posed by one of the referees.

Proposition 2.17. Suppose that C is compact and that (∀x ∈ dom f )D(x, ·) is strictly convex
on U. Denote the set of extreme points of conv C by E. Then

−→
Q C =

−→
Q conv C =

−→
Q E and

ran
−→
Q C ⊆ E.

Proof. Denote the set of extreme points of conv C by E . By [24, Corollary 18.3.1], E ⊆ C .
Furthermore, [24, Theorem 17.2] implies that conv C is compact. In turn, [24, Corollary 18.5.1]
yields conv C = conv E . Applying Proposition 2.15 twice, we deduce that

−→
Q C =

−→
Q conv C =

−→
Q conv E =

−→
Q E . Therefore, ran

−→
Q C = ran

−→
Q E ⊆ E . �
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3. Klee sets are singletons

The following result will be critical in the proof of our first main result (Theorem 3.2).

Theorem 3.1. Suppose that C is compact. Then argmin
−→
F C is a nonempty subset of U.

Proof. By (11), dom
−→
F C = dom f . Since C ⊂ U , it follows from Fact 2.4 that ∇ f (C) ⊂

∇ f (U ) = int dom f ∗. In view of Fact 2.5, we deduce that(
∀c ∈ C

)
f (·)− 〈·,∇ f (c)〉 is coercive. (26)

Since (∀c ∈ C)D(·, c) = ( f (·)− 〈·,∇ f (c)〉)+ (〈c,∇ f (c)〉 − f (c)), it follows that(
∀c ∈ C

)
D(·, c) is coercive. (27)

In turn, this implies that

−→
F C (·) = sup

c∈C
D(·, c) is coercive, convex, lower semicontinuous, and proper. (28)

In view of (28) and (14), argmin
−→
F C 6= ∅. Let

x0 ∈ argmin
−→
F C . (29)

It suffices to show that

x0 ∈ U. (30)

Assume to the contrary that x0 6∈ U . In view of (10) and (29), x0 ∈ (dom f r U ) ⊆ bdry dom f .
Now fix an arbitrary point x1 ∈ U and set(

∀ε ∈ ]0, 1[
)

xε := (1− ε)x0 + εx1. (31)

By [24, Theorem 6.1], (∀ε ∈ ]0, 1]), xε ∈ U . Set S := ∇ f (C). As already observed in the proof
of Lemma 2.8, conv S = conv S is a proper compact subset of int dom f ∗. Thus, there exists
ε̄ ∈ ]0, 1] such that (∀ε ∈ ]0, ε̄]) xε ∈ U r (∇ f ∗)(conv S). Lemma 2.8 now yields(

∀ε ∈ ]0, ε̄]
)(
∃yε ∈ (∇ f ∗)(conv S)

)(
∀c ∈ C

)
D(xε, c) ≥ D(xε, yε)+ D(yε, c). (32)

On one hand, while f is not necessarily continuous at x0, it is at least continuous along the line
segment [x0, x1] (see [24, Theorem 7.5]); consequently,

lim
ε→0+

f (xε) = f (x0). (33)

On the other hand, the net (yε)ε∈ ]0,ε̄] lies in ∇ f ∗(conv S), which is a compact set. After passing
to a subnet and relabeling if necessary, we assume that there exists a point y0 ∈ RJ such that

lim
ε→0+

yε = y0 ∈ ∇ f ∗(conv S) ⊂ U. (34)

Combining (33) and (34), invoking Lemma 2.3, and taking the limit in (32), we obtain altogether
that (

∀c ∈ C
)

D(x0, c) ≥ D(x0, y0)+ D(y0, c). (35)
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Since x0 ∈ bdry dom f and y0 ∈ int dom f = U , (5) results in D(x0, y0) > 0. Taking the
supremum in (35) over c ∈ C , we deduce that

−→
F C (x0) ≥ D(x0, y0)+

−→
F C (y0) >

−→
F C (y0), (36)

which contradicts (29). Therefore, we have verified (30), and the proof is complete. �

Theorem 3.2 (Every
−→
D -Klee Set is a Singleton). Suppose that C is compact and that C is

−→
D -

Klee. Then C is a singleton.

Proof. Recall that

−→
F C (·) = sup

c∈C
D(·, c) = sup

c∈C

((
f (·)− 〈·,∇ f (c)〉

)
+
(
〈c,∇ f (c)〉 − f (c)

))
. (37)

Because C is
−→
D -Klee, if x ∈ U , then

−→
Q C x is the unique point in C such that

−→
F C (x) =

D(x,
−→
Q C x) and (∀c ∈ C r {

−→
Q C x})

−→
F C (x) > D(x, c). In view of Theorem 3.1, we take

x0 ∈ argmin
−→
F C ⊂ U . Using the Fact 2.6, we obtain

0 ∈ ∂
−→
F C (x0) = ∇ f (x0)−∇ f (

−→
Q C x0). (38)

Hence ∇ f (x0) = ∇ f (
−→
Q C (x0)) and thus x0 =

−→
Q C (x0). Therefore, C = {x0}. �

Corollary 3.3 (Klee). Suppose that C is a compact Klee set with respect to the Euclidean
distance. Then C is a singleton.

Proof (See also [20]). This follows from Theorem 3.2 when f = 1
2‖ · ‖

2. �

We conclude this section with two results concerning
−→
D -Klee sets that are not assumed to be

compact. When considering classical Klee sets, a standard assumption is closedness. The next
result illustrates this assumption in the present Bregman distance setting.

Proposition 3.4. Suppose that C is a compact subset of U, and that U ⊆ dom
−→
Q C . Then C is

−→
D -Klee if and only if C is

−→
D -Klee and

−→
Q C is continuous on U.

Proof. “⇒”: Since C is compact, Theorem 3.2 implies that C is a singleton, say C = {y}. But

then C = {y} = C is also
−→
D -Klee, and

−→
Q C

∣∣∣
U
≡ {y} is clearly continuous on U .

“⇐”: Proposition 2.10 implies that both −∇ f ◦
−→
Q C

∣∣∣
U

and −∇ f ◦
−→
Q C

∣∣∣
U

are monotone

from U to RJ . Furthermore, since
−→
Q C is continuous on U , so is −∇ f ◦

−→
Q C

∣∣∣
U

. Thus, by

Proposition 2.9, −∇ f ◦
−→
Q C

∣∣∣
U

is maximal monotone from U to RJ . On the other hand, Propo-

sition 2.12 implies that

gr
(
−∇ f ◦

−→
Q C

∣∣∣
U

)
⊆ gr

(
−∇ f ◦

−→
Q C

∣∣∣
U

)
. (39)

Altogether, −∇ f ◦
−→
Q C

∣∣∣
U
= −∇ f ◦

−→
Q C

∣∣∣
U

, which yields
−→
Q C

∣∣∣
U
=
−→
Q C

∣∣∣
U

. Since
−→
Q C

∣∣∣
U

is

single-valued, so is
−→
Q C

∣∣∣
U

. Therefore, C is
−→
D -Klee. �
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If the underlying Bregman distance D is strictly convex in the second variable, then we obtain
the following result.

Proposition 3.5. Suppose that (∀x ∈ U ) D(x, ·) is strictly convex on U. Then conv C is
−→
D -

Klee if and only if C is
−→
D -Klee.

Proof. This is an immediate consequence of Proposition 2.15. �

4. Characterization of the Chebyshev centers

The proof of our second main result (Theorem 4.4) relies upon the next two results.

Proposition 4.1. Suppose that C is compact. Then
−→
F C is proper, lower semicontinuous, and

convex, with dom
−→
F C = dom f = dom

−→
Q C . Furthermore,

−→
F C is strictly convex on dom ∂

−→
F C

= int dom f = U.

Proof. We observed already (see (9) and (11)) that
−→
F C is convex and lower semicontinuous,

and that dom
−→
F C = dom f = dom

−→
Q C . Hence

−→
F C is proper. Now set

g : RJ
→]−∞,+∞]: x 7→ max

c∈C

(
〈c − x,∇ f (c)〉 − f (c)

)
, (40)

and note that g is convex with dom g = RJ
= int dom ∂g (see [24, Theorem 23.4]). Furthermore,

−→
F C = f + g. (41)

By the subdifferential sum rule (see [24, Theorem 23.8]), we have ∂
−→
F C = ∂ f + ∂g and hence

dom ∂
−→
F C = dom(∂ f ) ∩ dom(∂g) = dom(∂ f ) ∩ RJ

= dom ∂ f . On the other hand, since f is
a Legendre function, it follows from [24, Theorem 26.1] that dom ∂ f = int dom f . Altogether,
dom ∂

−→
F C = int dom f = U . Using once more the assumption that f is a Legendre function,

we have that f is strictly convex on int dom f = U , and therefore so is
−→
F C = f + g. �

Recall that for a proper convex function g : RJ
→]−∞,+∞], the directional derivative of

g at x ∈ dom g in the direction h ∈ RJ is defined by

g′(x; h) = lim
t→0+

g(x + th)− g(x)

t
. (42)

Theorem 4.2 (Directional Derivative). Suppose that C is compact, let x ∈ dom f , and let h ∈
RJ . Then

−→
F
′

C (x; h) = sup
{

f ′(x; h)− 〈h,∇ f (y)〉 | y ∈
−→
Q C (x)

}
. (43)

If x 6∈ U and x + h ∈ U, then
−→
F
′

C (x; h) = −∞.

Proof. Recall that dom
−→
F C = dom f = dom

−→
Q C by Proposition 4.1, so let y ∈

−→
Q C (x). Then(

∀t > 0
) −→

F C (x + th) ≥ D(x + th, y)

= f (x + th)− f (y)− 〈x + th − y,∇ f (y)〉 (44)
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and
−→
F C (x) = D(x, y) = f (x)− f (y)− 〈x − y,∇ f (y)〉 . (45)

Hence, (∀t > 0)
−→
F C (x + th)−

−→
F C (x) ≥ f (x + th)− f (x)− 〈th,∇ f (y)〉. Dividing by t and

taking the infimum over t > 0 yields

−→
F
′

C (x; h) ≥ f ′(x; h)− 〈h,∇ f (y)〉 . (46)

Taking the supremum over y ∈
−→
Q C (x) yields

−→
F
′

C (x; h) ≥ sup
{

f ′(x; h)− 〈h,∇ f (y)〉 | y ∈
−→
Q C (x)

}
. (47)

If [x, x + h] ∩ dom f = {x}, then f ′(x; h) = +∞; hence, (43) follows from (47). Thus, we
assume that [x, x + h] ∩ dom f contains a nontrivial line segment. Let (tn)n∈N be a sequence
in ]0, 1[ such that tn → 0+ and (x + tnh)n∈N lies in dom f . Furthermore, for every n ∈ N, let
cn ∈
−→
Q C (x + tnh). After passing to a subsequence and relabeling if necessary, we also assume

that cn → c̄ ∈ C . Then, for every n ∈ N,

−→
F C (x + tnh) = D(x + tnh, cn) = f (x + tnh)− f (cn)− 〈x + tnh − cn,∇ f (cn)〉 (48)

and
−→
F C (x) ≥ D(x, cn) = f (x)− f (cn)− 〈x − cn,∇ f (cn)〉; consequently,

−→
F C (x + tnh)−

−→
F C (x)

tn
≤

f (x + tnh)− f (x)

tn
− 〈h,∇ f (cn)〉 . (49)

Letting n→+∞ in (49), we deduce that

−→
F
′

C (x; h) ≤ f ′(x; h)− 〈h,∇ f (c̄)〉 . (50)

On the other hand, using line segment continuity of f and
−→
F C at x (see [24, Corollary 7.5.1]),

and continuity of both f and ∇ f on U , we see that letting n → +∞ in (48) yields
−→
F C (x) =

D(x, c̄). Hence c̄ ∈
−→
Q C (x). It thus follows from (50) that

−→
F
′

C (x; h) ≤ sup
{

f ′(x; h) −

〈h,∇ f (y)〉 | y ∈
−→
Q C (x)

}
. Combining this with (47), we deduce that (43) holds. The “If”

statement follows from (43) and [24, Theorem 23.3]. �

Theorem 4.3 (Subdifferential). Suppose that C is compact, and let x ∈ U. Then

∂
−→
F C (x) = ∇ f (x)− conv∇ f

(−→
Q C (x)

)
. (51)

Proof. By Theorem 4.2 and [24, Theorem 23.4],
−→
F
′

C (x; ·) is the support function of both

∇ f (x) − ∇ f (
−→
Q C (x)) and ∂

−→
F C (x). Therefore, the latter set (which is already closed and

convex) is the closed convex hull of the former set. Since
−→
Q C (x) is a compact subset of U

by Proposition 2.11, it follows from the continuity of ∇ f on U and from [24, Theorem 17.2] that
conv∇ f (

−→
Q C (x)) = conv∇ f (

−→
Q C (x)). This completes the proof. �

Theorem 4.4 (Uniqueness and Characterization of the
−→
D -Chebyshev Center). Suppose that C

is compact. Then
−→
F C has a unique minimizer x ∈ dom f , called the

−→
D -Chebyshev center of
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C, and characterized by

x ∈ ∇ f ∗
(

conv∇ f
(−→

Q C (x)
))
. (52)

Proof. Theorem 3.1 states that argmin
−→
F C is a nonempty subset of U . In view of the strict

convexity of
−→
F C on U (Proposition 4.1), argmin

−→
F C is a singleton, say {x}. By Theorem 4.3,

0 ∈ ∂
−→
F C (x) = ∇ f (x) − conv∇ f (

−→
Q C (x)) and thus ∇ f (x) ∈ conv∇ f (

−→
Q C (x)). Now apply

Fact 2.4. �

Corollary 4.5 (Garkavi–Klee See [16] and also [19]). Suppose that C is compact and that
x ∈ RJ . Then x is the Chebyshev center of C with respect to the Euclidean distance if and
only if

x ∈ conv
−→
Q C (x). (53)

Corollary 4.6 (Nock–Nielsen See [23] and also [22]). Suppose that C is finite. Then the
−→
D -

Chebyshev center of C is the unique point x ∈ U characterized by

x ∈ ∇ f ∗
(

conv∇ f
(−→

Q C (x)
))
. (54)

Corollary 4.7. Suppose that C is compact and that it contains at least 2 points, and let x ∈ U
be the

−→
D -Chebyshev center of C. Then

−→
Q C (x) must contain at least 2 points.

Proof. Suppose to the contrary that
−→
Q C (x) is a singleton. Then (52) implies that

−→
Q C (x) = {x},

i.e., that x is its own farthest point in C . In view of (5) and the assumption that C contains a point
different from x , this is absurd. �

5. Constructing and visualizing the Chebyshev centers

We work in the Euclidean plane, i.e., we assume that J = 2, and we let D be the halved
squared Euclidean distance, the Kullback–Leibler divergence, or the Itakura–Saito distance (see
Example 1.3). Set

c0 = (1, a) and c1 = (a, 1), where a ∈ ]1,+∞[, (55)

and (
∀λ ∈ R

)
cλ = (1− λ)c0 + λc1. (56)

Furthermore, we assume that

C = conv{c0, c1} =
{
cλ | λ ∈ [0, 1]

}
=
{(

1− λ+ λa, (1− λ)a + λ
)
| λ ∈ [0, 1]

}
=
{
((a − 1)λ+ 1, (1− a)λ+ a) | λ ∈ [0, 1]

}
. (57)

Note that C ⊂ R2
++ ⊆ U , and that C is compact and convex. In view of Theorem 4.4, the

−→
D -Chebyshev center z of C is characterized by

z ∈ ∇ f ∗
(

conv∇ f
(−→

Q C (z)
))
. (58)
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Our aim in this section is to determine z and related objects, and to visualize them. It will be
convenient to set

∆ =
{
(x, x) | x ∈ R

}
. (59)

Relying heavily on symmetries of the Bregman distance D and the set C (both with respect to
switching coordinates), we now start the process of pinpointing z.

Proposition 5.1. z ∈ ∆.

Proof. For x = (x1, x2) ∈ R2, set xᵀ = (x2, x1). Observe that for the choices of D considered
in this section, (∀x ∈ R2)(∀y ∈ R2) D(x, y) = D(xᵀ, yᵀ) and that Cᵀ =

{
cᵀ | c ∈ C

}
= C .

Thus, (∀x ∈ R2)
−→
F C (x) =

−→
F C (xᵀ). Since z is the unique minimizer of

−→
F C , we must have that

z = zᵀ, i.e., that z ∈ ∆. �

Example 5.2 (Halved Squared Euclidean Distance). Suppose D is as in Example 1.3(i), and let
x = (x1, x2) ∈ R2. Then

−→
Q C (x) =

{c0}, if x2 < x1;
{c1}, if x1 < x2;
{c0, c1}, if x1 = x2,

(60)

and z = c1/2 =
( 1

2 (1+ a), 1
2 (1+ a)

)
.

Proof. Set

dx : R→ [0,+∞[: λ 7→ D(x, cλ). (61)

Then for every λ ∈ R, we have

dx(λ) = (a − 1)2λ2
+ (1− a)(x1 − x2 + a − 1)λ+

(x1 − 1)2 + (x2 − a)2

2
, (62)

d ′x(λ) = (x1 − x2 − 1+ a)(1− a)+ 2λ(1− a)2 and d ′′x (λ) = 2(a − 1)2. (63)

Hence
−→
Q C (x) ⊆ {c0, c1}. Since dx(0)− dx(1) = (1− a)(x2− x1), we obtain (60). Furthermore,

since C is convex and c1/2 ∈ ∆, we have c1/2 ∈ C = conv{c0, c1} = conv
−→
Q C (c1/2). Therefore,

the characterization (58) of z yields z = c1/2. (Alternatively, one may verify that c1/2 is the

unique minimizer of the function ∆→ [0,+∞[: (x, x) 7→ d(x,x)(0) =
−→
F C (x, x).) �

Example 5.3 (Kullback–Leibler Divergence). Suppose D is as in Example 1.3(iii), and let x =
(x1, x2) ∈ U . Then

−→
Q C (x) =

{c0}, if x2 < x1;
{c1}, if x1 < x2;
{c0, c1}, if x1 = x2,

(64)

and z =
(√

a,
√

a
)
.

Proof. Set

dx : R→ [0,+∞] : λ 7→ D(x, cλ). (65)
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Then dom dx =
{
λ ∈ R | cλ ∈ U

}
= ] − 1/(a − 1), a/(a − 1)[ ⊃ [0, 1]. For every λ ∈ dom dx,

we have

dx(λ) = −x1 ln
(
(a − 1)λ+ 1

x1

)
− x1 + 1− x2 ln

(
(1− a)λ+ a

x2

)
− x2 + a, (66)

d ′x(λ) = −
x1(a − 1)
(a − 1)λ+ 1

−
x2(1− a)

(1− a)λ+ a
, (67)

and

d ′′x (λ) =
x1(a − 1)2(
(a − 1)λ+ 1

)2 + x2(1− a)2(
(1− a)λ+ a

)2 > 0. (68)

Thus, dx has no local maximizers in dom dx and therefore
−→
Q C (x) ⊆ {c0, c1}. Because of

D(x, c0)− D(x, c1) = dx(0)− dx(1) = (x1 − x2) ln(a), (69)

we see that (64) must hold. Finally, (64) implies that(√
a,
√

a
)
=

(
exp

(1
2

(
0+ ln(a)

))
, exp

(1
2

(
ln(a)+ 0

)))
= (exp× exp)

(1
2

(
ln(1), ln(a)

)
+

1
2

(
ln(a), ln(1)

))
= ∇ f ∗

(
1
2
∇ f (c0)+

1
2
∇ f (c1)

)
∈ ∇ f ∗

(
conv∇ f

(
−→
Q C

(√
a,
√

a
)))

. (70)

In view of the characterization (58) of z, we deduce that z =
(√

a,
√

a
)
. �

Remark 5.4. (i) The fact that the extreme points {c0, c1} play a role in Examples 5.2 and 5.3 is
not surprising since in these cases D(x, ·) is convex for every x ∈ U (see, e.g., [4]) so that
[24, Corollary 32.3.2] applies.

(ii) Note that z is the (coordinate-wise) arithmetic mean of c0 and c1 when D is the halved
squared Euclidean distance (Example 5.2), and that z is the (coordinate-wise) geometric
mean of c0 and c1 when D is the Kullback–Leibler divergence (Example 5.3). This might
nurture the conjecture that z is the (coordinate-wise) harmonic mean of c0 and c1 for the
Itakura–Saito distance—depending on the location of a, this is sometimes but not always the
case (see Example 5.5 and Lemma 5.6).

Example 5.5 (Itakura–Saito Distance). Suppose that D is as in Example 1.3(iv). Set

g = g(a) =
a(a + 1)

(a − 1)2
ln
(
(a + 1)2

4a

)
and h = h(a) =

2a

a + 1
. (71)

Then

z =
{
(h, h), if g < h;
(g, g), if g ≥ h;

and
−→
Q C (z) =

{
{c0, c1}, if g < h;
{c0, c1/2, c1}, if g ≥ h.

(72)

Proof. Set

g = (g, g) and h = (h, h), (73)
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and note that a straightforward computation yields

∆ ∩ ∇ f ∗
(

conv∇ f
(
{c0, c1}

))
= {h}. (74)

Let x = (x, x) ∈ U ∩∆ and set

dx : R→ [0,+∞]: λ 7→ D(x, cλ). (75)

Then dom dx =
{
λ ∈ R | cλ ∈ U

}
= ] − 1/(a − 1), a/(a − 1)[ ⊃ [0, 1]. For every λ ∈ dom dx,

we have

dx(λ) = ln
(
(a − 1)λ+ 1

x

)
+

x

(a − 1)λ+ 1

+ ln
(
(1− a)λ+ a

x

)
+

x

(1− a)λ+ a
− 2 (76)

and hence

d ′x(λ) =
a − 1

(a − 1)λ+ 1
−

x(a − 1)(
(a − 1)λ+ 1

)2 + 1− a

(1− a)λ+ a
−

x(1− a)(
(1− a)λ+ a

)2 . (77)

We note in passing that an elementary calculation results in

dx(0)− dx

(
1
2

)
= ln

(
4a

(a + 1)2

)
+

(
(a − 1)2

a(a + 1)

)
x . (78)

Now observe that d ′x(
1
2 ) = 0 and that d ′x(λ) in (77) is also a quotient of two polynomials (in λ),

where the numerator is a polynomial of degree 3 or less. Thus, d ′x has at most two further
roots different from 1

2 , which would have to be centered symmetrically around 1
2 because of

the symmetry of dx about 1
2 . Furthermore, dx(λ)→ +∞ as λ approaches either boundary point

of dom dx. Hence, critical points of dx that are different from 1
2 cannot be local maximizers.

Therefore,
−→
Q C (x) ⊆ {c0, c1/2, c1}. The symmetry of D and C yields that exactly one of the

following holds:
−→
Q C (x) = {c1/2},

−→
Q C (x) = {c0, c1}, or

−→
Q C (x) = {c0, c1, c1}. Combining this

with (78), we obtain the equivalences

−→
Q C (x) = {c0, c1} ⇔ dx(0)− dx

(
1
2

)
> 0⇔ x > g. (79)

Let us now turn to the
−→
D -Chebyshev center z of C . Since z ∈ ∆ (Proposition 5.1) and

−→
Q C (z)

must contain at least 2 points (Corollary 4.7), we write z = (z, z) and we deduce that either
−→
Q C (z) = {c0, c1} or

−→
Q C (z) = {c0, c1/2, c1}. In turn, this means that exactly one of the following

two cases holds.
−→
Q C (z) = {c0, c1}, (Case 1)

or
−→
Q C (z) = {c0, c1/2, c1}. (Case 2)

If (Case 1) holds, then (58), Proposition 5.1, (74), and (79) yield that z = h and that z > g. Thus,

(Case 1)⇒ z = h > g. (80)
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Using (78), we obtain the implication

(Case 2)⇒ z = g. (81)

We now assume momentarily that g < h. Then, by (79),
−→
Q C (h) = {c0, c1} and hence h ∈

∇ f ∗(conv∇
−→
Q C (h)) by (74). In view of the characterization (58) of z, we obtain z = h and

hence z = h. We thus have verified the first case of (72).
Finally, we assume that g ≥ h. In view of (80), (Case 1) cannot hold. Thus, (Case 2) must

hold and (81) yields that z = g, i.e., that z = g. �

The formula for z given in Example 5.5 immediately raises the question on how g and h
relate to each other, viewed as functions of a. In the following result, we provide an alternative
description of the inequality g < h.

Lemma 5.6. Let the functions g and h be defined on the interval I = ]1,+∞[ by

g(x) =
x(x + 1)

(x − 1)2
ln
(
(x + 1)2

4x

)
and h(x) =

2x

x + 1
. (82)

Then there exists a real number ã ∈ I such that

(
∀x ∈ I

) g(x) < h(x), if x < ã;
g(x) = h(x), if x = ã;
g(x) > h(x), if x > ã.

(83)

In fact, ã ≈ 17.63.

Proof. Observe that

h(x) > g(x) ⇔
2(x − 1)2

(x + 1)2
> ln

(
(x + 1)2

4x

)
= 2 ln(x + 1)− ln(4x) (84)

⇔ k(x) :=
2(x − 1)2

(x + 1)2
− 2 ln(x + 1)+ ln(4x) > 0.

Since

k′(x) =
8(x − 1)

(x + 1)3
−

2
x + 1

+
1
x
=
−(x − 1)(x2

− 6x + 1)

x(x + 1)3

=
−(x − 1)

(
x − (3− 2

√
2)
)(

x − (3+ 2
√

2)
)

x(x + 1)3
, (85)

we set ξ = 3 + 2
√

2 ≈ 5.83, and we deduce that k is strictly increasing on ]1, ξ ] and that k
is strictly decreasing on [ξ,+∞[. On the other hand, k(1) = 0 and limx→+∞ k(x) = −∞.
Altogether, there must exist some number ã > ξ such that k > 0 on ]1, ã[, k (̃a) = 0, and k < 0
on ]̃a,+∞[. In view of (84), we obtain (83). Finally, the proclaimed approximation ã ≈ 17.63
follows from Maple, Mathematica, or by simple bisection. �

Remark 5.7. Consider again Example 5.5 and its notation. Define numbers µ0, µ1/2, µ1
according to the following two alternatives:
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g < h ⇒

{
µ0 = µ1 =

1
2
;

µ1/2 = 0,
(86)

or

g ≥ h ⇒


µ0 = µ1 =

(a − 1)2 − 2a ln
(
(a+1)2

4a

)
(a − 1)2 ln

(
(a+1)2

4a

) ;

µ1/2 =
−2(a − 1)2 + (a + 1)2 ln

(
(a+1)2

4a

)
(a − 1)2 ln

(
(a+1)2

4a

) .

(87)

One may verify that {µ0, µ1/2, µ1} ⊂ [0, 1], that µ0 + µ1/2 + µ1 = 1, and that

z = ∇ f ∗
(
µ0∇ f (c0)+ µ1/2∇ f (c1/2)+ µ1∇ f (c1)

)
. (88)

Note that the existence of such convex coefficients is guaranteed by (58).

Remark 5.8. Fig. 1 shows the set C , the Chebyshev center z of C , and the corresponding sphere
of radius

−→
F C (z) centered at z, for a variety of values of a (fixed within each row) and for each

of the three distances analyzed (fixed within each column). Specifically, shown are a = 4 and
a = 8 over the region R = [0, 10] × [0, 10] (top two rows), and a = 16 and a = 32 over
the region R = [0, 50] × [0, 50] (bottom two rows). Each are shown over color-maps indicating
−→
F C (x) for each x ∈ R, with the interpretation of the colors indicated in the accompanying
color-legend. Note that the colors indicate distances from each point in the specified region to
the farthest point in C , but are only relative comparisons within each graph; the same color in
separate images does not indicate the same numerical magnitude, neither for a fixed distance D
nor for a fixed value of a. In addition, the color-maps for the halved squared Euclidean distance
and the Kullback–Leibler divergence were calculated using

−→
Q C (x) in Examples 5.2 and 5.3,

respectively. However, the color-map for the Itakura–Saito distance was calculated numerically
by a discretization of C due to the absence of a corresponding formula for

−→
Q C (x) in Example 5.5.

We make the following observations directly from Fig. 1:

(i) As predicted by our analysis, for the halved squared Euclidean distance, z falls on the point
c1/2 for all values of a (left-column). The color-map corresponds to max{D(x, c0), D(x, c1)},
with D(x, c0) = D(x, c1) along ∆ as per (60).

(ii) For the Itakura–Saito distance and for small a (see a = 4 and a = 8), the endpoints c0 and c1
are the farthest points from the Chebyshev center (h, h). When a ≥ ã (see Lemma 5.6), then
the farthest points from (g, g) are {c0, c1/2, c1}, and D((g, g), c1/2) <

−→
F C (h, h), visually

confirming that (g, g) is now the Chebyshev center (see Fig. 1 for a = 32).

Remark 5.9. Finally, let us fix x = (1, 1) and assume that a = 6. For the Itakura–Saito distance,
we have that the farthest point

−→
Q C (x) is c1/2, which is actually the nearest point of C to x for

both of the other distances. Indeed, Fig. 2 shows the spheres for the Itakura–Saito distance for a
variety of radii. The thickness of the line segments is plotted proportional to the distance from x.
(In addition, note that the Itakura–Saito ball is convex for small a, a fact not apparent in Fig. 1.)
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Fig. 1. The set C , the Chebyshev center z of C , and the sphere of radius
−→
F C (z) centered at z, for C the line segment

connecting (1, a) and (a, 1) for a = 4 and a = 8 over the region [0, 10]×[0, 10]; and a = 16 and a = 32, over the region
[0, 50] × [0, 50]. Each is shown over color-maps for the three distances analyzed in Section 5, with the interpretations of
the colors indicated in the color-legend. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 2. Spheres for the Ikaturo-Saito distance centered at x = (1, 1), for a variety of radii. Also shown are the line-
segments C from (1, a) to (a, 1) for a = 2, 4, 6, 8, with plot intensity proportional to the distance from x.
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