1,263 research outputs found
Concurrent panel session 2: Challenges facing our youth and aged populations
Moderator: Dr. Ann McDonough, UNLV Gerontology Program Scribe: Lisa Gioia-Acres, UNLV Department of History Conference white paper & Full summary of panel session, 4 page
A qualitative study of patients’ feedback about Outpatient Parenteral Antimicrobial Therapy (OPAT) services in Northern England: implications for service improvement
Objective Outpatient parenteral antimicrobial therapy (OPAT) provides opportunities for improved cost savings, but in the UK, implementation is patchy and a variety of service models are in use. The slow uptake in the UK and Europe is due to a number of clinical, financial and logistical issues, including concern about patient safety. The measurement of patient experience data is commonly used to inform commissioning decisions, but these focus on functional aspects of services and fail to examine the relational aspects of care. This qualitative study examines patients’ experiences of OPAT. Design In-depth, semistructured interviews. Setting Purposive sample of OPAT patients recruited from four acute National Health Service (NHS) Trusts in Northern England. These NHS Trusts between them represented both well-established and recently set-up services running nurse at home, hospital outpatient and/or selfadministration models. Participants We undertook 28 semistructured interviews and one focus group (n=4). Results Despite good patient outcomes, experiences were coloured by patients' personal situation and material circumstances. Many found looking after themselves at home more difficult than they expected, while others continued to work despite their infection. Expensive car parking, late running services and the inconvenience of waiting in for the nurse to arrive frustrated patients, while efficient services, staffed by nurses with the specialist skills needed to manage intravenous treatment had the opposite effect. Many patients felt a local, general practitioner or community health centre based service would resolve many of the practical difficulties that made OPAT inconvenient. Patients could find OPAT anxiety provoking but this could be ameliorated by staff taking the time to reassure patients and provide tailored information. Conclusion Services configurations must accommodate the diversity of the local population. Poor communication can leave patients lacking the confidence needed to be a competent collaborator in their own care and affect their perceptions of the service
Adsorption hysteresis and capillary condensation in disordered porous solids: a density functional study
We present a theoretical study of capillary condensation of fluids adsorbed
in mesoporous disordered media. Combining mean-field density functional theory
with a coarse-grained description in terms of a lattice-gas model allows us to
investigate both the out-of-equilibrium (hysteresis) and the equilibrium
behavior. We show that the main features of capillary condensation in
disordered solids result from the appearance of a complex free-energy landscape
with a large number of metastable states. We detail the numerical procedures
for finding these states, and the presence or absence of transitions in the
thermodynamic limit is determined by careful finite-size studies.Comment: 30 pages, 18 figures. To appear in J. Phys.: Condens. Matte
Drift-induced deceleration of Solar Energetic Particles
We investigate the deceleration of Solar Energetic Particles (SEPs) during their propagation from the Sun through interplanetary space, in the presence of weak to strong scattering in a Parker spiral configuration, using relativistic full orbit test particle simulations. The calculations retain all three spatial variables describing particles’ trajectories, allowing to model any transport across the magnetic field. Large energy change is shown to occur for protons, due to the combined effect of standard adiabatic deceleration and a significant contribution from particle drift in the direction opposite to that of the solar wind electric field. The latter drift-induced deceleration is found to have a stronger effect for SEP energies than for galactic cosmic rays. The kinetic energy of protons injected at 1 MeV is found to be reduced by between 35 and 90% after four days, and for protons injected at 100 MeV by between 20 and 55%. The overall degree of deceleration is a weak function of the scattering mean free path, showing that, although adiabatic deceleration plays a role, a large contribution is due to particle drift. Current SEP transport models are found to account for drift-induced deceleration in an approximate way and their accuracy will need to be assessed in future work
Tunable few-electron double quantum dots and Klein tunnelling in ultra-clean carbon nanotubes
Quantum dots defined in carbon nanotubes are a platform for both basic
scientific studies and research into new device applications. In particular,
they have unique properties that make them attractive for studying the coherent
properties of single electron spins. To perform such experiments it is
necessary to confine a single electron in a quantum dot with highly tunable
barriers, but disorder has until now prevented tunable nanotube-based
quantum-dot devices from reaching the single-electron regime. Here, we use
local gate voltages applied to an ultra-clean suspended nanotube to confine a
single electron in both a single quantum dot and, for the first time, in a
tunable double quantum dot. This tunability is limited by a novel type of
tunnelling that is analogous to that in the Klein paradox of relativistic
quantum mechanics.Comment: 21 pages including supplementary informatio
Endothelial dysfunction in COVID-19: a position paper of the ESC Working Group for Atherosclerosis and Vascular Biology, and the ESC Council of Basic Cardiovascular Science
The COVID-19 pandemic is an unprecedented healthcare emergency causing mortality and illness across the world. Although primarily affecting the lungs, the SARS-CoV-2 virus also affects the cardiovascular system. In addition to cardiac effects, e.g. myocarditis, arrhythmias, and myocardial damage, the vasculature is affected in COVID-19, both directly by the SARS-CoV-2 virus, and indirectly as a result of a systemic inflammatory cytokine storm. This includes the role of the vascular endothelium in the recruitment of inflammatory leucocytes where they contribute to tissue damage and cytokine release, which are key drivers of acute respiratory distress syndrome (ARDS), in disseminated intravascular coagulation, and cardiovascular complications in COVID-19. There is also evidence linking endothelial cells (ECs) to SARS-CoV-2 infection including: (i) the expression and function of its receptor angiotensin-converting enzyme 2 (ACE2) in the vasculature; (ii) the prevalence of a Kawasaki disease-like syndrome (vasculitis) in COVID-19; and (iii) evidence of EC infection with SARS-CoV-2 in patients with fatal COVID-19. Here, the Working Group on Atherosclerosis and Vascular Biology together with the Council of Basic Cardiovascular Science of the European Society of Cardiology provide a Position Statement on the importance of the endothelium in the underlying pathophysiology behind the clinical presentation in COVID-19 and identify key questions for future research to address. We propose that endothelial biomarkers and tests of function (e.g. flow-mediated dilatation) should be evaluated for their usefulness in the risk stratification of COVID-19 patients. A better understanding of the effects of SARS-CoV-2 on endothelial biology in both the micro- and macrovasculature is required, and endothelial function testing should be considered in the follow-up of convalescent COVID-19 patients for early detection of long-term cardiovascular complications
The Extended Environment of M17: A Star Formation History
M17 is one of the youngest and most massive nearby star-formation regions in
the Galaxy. It features a bright H II region erupting as a blister from the
side of a giant molecular cloud (GMC). Combining photometry from the Spitzer
GLIMPSE survey with complementary infrared (IR) surveys, we identify candidate
young stellar objects (YSOs) throughout a 1.5 deg x 1 deg field that includes
the M17 complex. The long sightline through the Galaxy behind M17 creates
significant contamination in our YSO sample from unassociated sources with
similar IR colors. Removing contaminants, we produce a highly-reliable catalog
of 96 candidate YSOs with a high probability of association with the M17
complex. We fit model spectral energy distributions to these sources and
constrain their physical properties. Extrapolating the mass function of 62
intermediate-mass YSOs (M >3 Msun), we estimate that >1000 stars are in the
process of forming in the extended outer regions of M17.
From IR survey images from IRAS and GLIMPSE, we find that M17 lies on the rim
of a large shell structure ~0.5 deg in diameter (~20 pc at 2.1 kpc). We present
new maps of CO and 13CO (J=2-1) emission, which show that the shell is a
coherent, kinematic structure associated with M17 at v = 19 km/s. The shell is
an extended bubble outlining the photodissociation region of a faint, diffuse H
II region several Myr old. We provide evidence that massive star formation has
been triggered by the expansion of the bubble. The formation of the massive
cluster ionizing the M17 H II region itself may have been similarly triggered.
We conclude that the star formation history in the extended environment of M17
has been punctuated by successive waves of massive star formation propagating
through a GMC complex.Comment: 31 pages, 15 figures, accepted for publication in ApJ. For a version
with higher-quality figures, see
http://www.astro.wisc.edu/glimpse/Povich2009_M17.pd
Spatially resolved acoustic spectroscopy for rapid imaging of material microstructure and grain orientation
Measuring the grain structure of aerospace materials is very important to understand their mechanical properties and in-service performance. Spatially resolved acoustic spectroscopy is an acoustic technique utilizing surface acoustic waves to map the grain structure of a material. When combined with measurements in multiple acoustic propagation directions, the grain orientation can be obtained by fitting the velocity surface to a model. The new instrument presented here can take thousands of acoustic velocity measurements per second. The spatial and velocity resolution can be adjusted by simple modification to the system; this is discussed in detail by comparison of theoretical expectations with experimental data
Social Value of Marine and Coastal Protected Areas in England and Wales.
The U.K. government is committed to establishing a coherent network of marine protected
areas by 2012 and the recentMarine and Coastal Access Act, 2009 will designate
marine conservation zones and provide wider access rights to the coast. To fulfill these
goals, this article argues the need for a clearer, shared understanding of the social
value of protected areas in creating new designations and managing existing ones. Although
marine and coastal environments attract many people and are vitally important
in terms of realized and potential social value, the majority of the public in the United
Kingdom lacks understanding and awareness regarding them. Combined with this, the
social value of marine and coastal protected areas (MCPAs) have been largely ignored
relative to conservation and economics, with the latter invariably taking precedence
in environmental policymaking. Social value reflects the complex, individual responses
that people experience in a given place. Many reasons determine why one area is valued
above another, and this research investigates the social value of MCPAs from a
practitioner’s perspective through a series of interviews. Understanding why we “socially”
value MCPAs will ultimately equip managers with an informed understanding
of these spaces, influence management decisions, and, potentially, policymaking. This
article defines social value in the context of MCPAs in England and Wales from a
practitioner perspective, explores key concepts, and suggests possible improvements in
decision-making
Maternal psychological distress in primary care and association with child behavioural outcomes at age three
Observational studies indicate children whose mothers have poor mental health are at increased risk of socio-emotional behavioural difficulties, but it is unknown whether these outcomes vary by the mothers’ mental health recognition and treatment status. To examine this question, we analysed linked longitudinal primary care and research data from 1078 women enrolled in the Born in Bradford cohort. A latent class analysis of treatment status and self-reported distress broadly categorised women as (a) not having a common mental disorder (CMD) that persisted through pregnancy and the first 2 years after delivery (N = 756, 70.1 %), (b) treated for CMD (N = 67, 6.2 %), or (c) untreated (N = 255, 23.7 %). Compared to children of mothers without CMD, 3-year-old children with mothers classified as having untreated CMD had higher standardised factor scores on the Strengths and Difficulties Questionnaire (d = 0.32), as did children with mothers classified as having treated CMD (d = 0.27). Results were only slightly attenuated in adjusted analyses. Children of mothers with CMD may be at risk for socio-emotional and behavioural difficulties. The development of effective treatments for CMD needs to be balanced by greater attempts to identify and treat women. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00787-015-0777-2) contains supplementary material, which is available to authorized users
- …