74 research outputs found

    Selective antagonism of cJun for cancer therapy

    Get PDF
    The activator protein-1 (AP-1) family of transcription factors modulate a diverse range of cellular signalling pathways into outputs which can be oncogenic or anti-oncogenic. The transcription of relevant genes is controlled by the cellular context, and in particular by the dimeric composition of AP-1. Here, we describe the evidence linking cJun in particular to a range of cancers. This includes correlative studies of protein levels in patient tumour samples and mechanistic understanding of the role of cJun in cancer cell models. This develops an understanding of cJun as a focal point of cancer-altered signalling which has the potential for therapeutic antagonism. Significant work has produced a range of small molecules and peptides which have been summarised here and categorised according to the binding surface they target within the cJun-DNA complex. We highlight the importance of selectively targeting a single AP-1 family member to antagonise known oncogenic function and avoid antagonism of anti-oncogenic function

    Library-derived peptide aggregation modulators of Parkinson's disease early-onset alpha-synuclein variants.

    Get PDF
    [Image: see text] Parkinson’s Disease (PD) is characterized by the accumulation of Lewy bodies in dopaminergic neurons. The main protein component of Lewy bodies, α-synuclein (αS), is also firmly linked to PD through the identification of a number of single point mutations that are autosomal dominant for early-onset disease. Consequently, the misfolding and subsequent aggregation of αS is thought to be a key stage in the development and progression of PD. Therefore, modulating the aggregation pathway of αS is an attractive therapeutic target. Owing to the fact that all but one of the familial mutations is located in the preNAC 45–54 region of αS, we previously designed a semi-rational library using this sequence as a design scaffold. The 45–54 peptide library was screened using a protein-fragment complementation assay approach, leading to the identification of the 4554W peptide. The peptide was subsequently found to be effective in inhibiting primary nucleation of αS, the earliest stage of the aggregation pathway. Here, we build upon this previous work by screening the same 45–54 library against five of the known αS single-point mutants that are associated with early-onset PD (A30P, E46K, H50Q, G51D, and A53T). These point mutations lead to a rapid acceleration of PD pathology by altering either the rate or type of aggregates formed. All ultimately lead to earlier disease onset and were therefore used to enforce increased assay stringency during the library screening process. The ultimate aim was to identify a peptide that is effective against not only the familial αS variant from which it has been selected but that is also effective against WT αS. Screening resulted in five peptides that shared common residues at some positions, while deviating at others. All reduced aggregation of the respective target, with several also identified to be effective at reducing aggregation when incubated with other variants. In addition, our results demonstrate that a previously optimized peptide, 4554W(N6A), is highly effective against not only WT αS but also several of the single-point mutant forms and hence is a suitable baseline for further work toward a PD therapeutic

    A downsized and optimised intracellular library-derived peptide prevents alpha-synuclein primary nucleation and toxicity without impacting upon lipid binding

    Get PDF
    Misfolding and aggregation of alpha-synuclein (αS) within dopaminergic neurons is a key factor in the development and progression of a group of age-related neurodegenerative diseases, termed synucleinopathies, that include Parkinson's disease (PD). We previously derived a peptide inhibitor from a 209,952-member intracellular library screen by employing the preNAC region (45–54) as a design template. At least six single-point mutations firmly linked to early-onset Parkinson's disease (E46K, H50Q, G51D, A53T/E/V) are located within this region, strongly implicating a pathogenic role within αS that leads to increased cytotoxicity. A library-derived ten residue peptide, 4554W, was consequently shown to block αS aggregation at the point of primary nucleation via lipid induction, inhibiting its conversion into downstream cytotoxic species. Here we couple truncation with a full alanine scan analysis, to establish the effect upon the αS aggregation pathway relative to 4554W. This revealed the precise residues responsible for eliciting inhibitory interaction and function, as well as those potentially amenable to modification or functionalisation. We find that modification N6A combined with N-terminal truncation results in a peptide of significantly increased efficacy. Importantly, our data demonstrate that the peptide does not directly disrupt αS lipid-binding, a desirable trait since antagonists of αS aggregation and toxicity should not impede association with small synaptic neurotransmitter vesicles, and thus not disrupt dopaminergic vesicle fusion and recycling. This work paves the way toward the major aim of deriving a highly potent peptide antagonist of αS pathogenicity without impacting on native αS function.</p

    An Approach to Derive Functional Peptide Inhibitors of Transcription Factor Activity

    Get PDF
    We report the development of a high-throughput, intracellular "transcription block survival" (TBS) screening platform to derive functional transcription factor antagonists. TBS is demonstrated using the oncogenic transcriptional regulator cJun, with the development of antagonists that bind cJun and prevent both dimerization and, more importantly, DNA binding remaining a primary challenge. In TBS, cognate TRE sites are introduced into the coding region of the essential gene, dihydrofolate reductase (DHFR). Introduction of cJun leads to TRE binding, preventing DHFR expression by directly blocking RNA polymerase gene transcription to abrogate cell proliferation. Peptide library screening identified a sequence that both binds cJun and antagonizes function by preventing DNA binding, as demonstrated by restored cell viability and subsequent in vitro hit validation. TBS is an entirely tag-free genotype-to-phenotype approach, selecting desirable attributes such as high solubility, target specificity, and low toxicity within a complex cellular environment. TBS facilitates rapid library screening to accelerate the identification of therapeutically valuable sequences

    The effect of helix-inducing constraints and downsizing upon a transcription block survival-derived functional cJun antagonist

    Get PDF
    Inhibition of cJun is established as a promising therapeutic approach, particularly in cancer. We recently developed the "transcription block survival" (TBS) screening platform to derive functional peptide antagonists of transcription factor activity by ablating their ability to bind to cognate DNA. Using TBS, we screened a >131,000-member peptide library to select a 63-mer peptide that bound cJun and prevented 12-O-tetradecanoylphorbol-13-acetate response element (TRE) DNA binding. Iterative truncation was next combined with a systematic exploration of side-chain cyclization to derive a minimal active sequence. The resulting dual lactamized sequence was >40% smaller and retained low nM target affinity (equilibrium binding constant [K D ] = 0.2 versus 9.7 nM), with 8 residues at the acidic region required for functional antagonism. However, even modest C-terminal truncation resulted in functional loss. The peptide functionally antagonizes cJun (half-maximal inhibitory concentration [IC50] = 13 versus 45 μM) and is considerably more stable in human serum relative to its non-lactamized counterpart and HingeW

    Exploiting Overlapping Advantages of <i>in vitro</i> and <i>in cellulo</i> Selection Systems to Isolate a Novel High-affinity cJun Antagonist

    Get PDF
    We have combined two peptide library-screening systems, exploiting the benefits offered by both to select novel antagonistic agents of cJun. CIS display is an <i>in vitro</i> cell-free system that allows very large libraries (≤10<sup>14</sup>) to be interrogated. However, affinity-based screening conditions can poorly reflect those relevant to therapeutic application, particularly for difficult intracellular targets, and can lead to false positives. In contrast, an <i>in cellulo</i> screening system such as the Protein-fragment Complementation Assay (PCA) selects peptides with high target affinity while additionally profiling for target specificity, protease resistance, solubility, and lack of toxicity in a more relevant context. A disadvantage is the necessity to transform cells, limiting library sizes that can be screened to ≤10<sup>6</sup>. However, by combining both cell-free and cell-based systems, we isolated a peptide (CPW) from a ∼10<sup>10</sup> member library, which forms a highly stable interaction with cJun (<i>T</i><sub>m</sub> = 63 °C, <i>K</i><sub>d</sub> = 750 nM, Δ<i>G</i> = −8.2 kcal/mol) using the oncogenic transcriptional regulator Activator Protein-1 (AP-1) as our exemplar target. In contrast, CIS display alone selected a peptide with low affinity for cJun (<i>T</i><sub>m</sub> = 34 °C, <i>K</i><sub>d</sub> = 25 μM, Δ<i>G</i> = −6.2 kcal/mol), highlighting the benefit of CIS → PCA. Furthermore, increased library size with CIS → PCA vs PCA alone allows the freedom to introduce noncanonical options, such as interfacial aromatics, and solvent exposed options that may allow the molecule to explore alternative structures and interact with greater affinity and efficacy with the target. CIS → PCA therefore offers significant potential as a peptide-library screening platform by synergistically combining the relative attributes of both assays to generate therapeutically interesting compounds that may otherwise not be identified

    In vitro single molecule and bulk phase studies reveal the AP-1 transcription factor cFos binds to DNA without its partner cJun

    Get PDF
    The AP-1 transcription factor family crucially regulates progression of the cell cycle, as well as playing roles in proliferation, differentiation, and the stress response. The two best described AP-1 family members, cFos and cJun, are known to dimerize to form a functional AP-1 heterodimer that binds to a consensus response element sequence. Although cJun can also homodimerize and bind to DNA, the canonical view is that cFos cannot bind DNA without heterodimerizing with cJun. Here, we show that cFos can actually bind to DNA in the absence of cJun in vitro. Using dual color single molecule imaging of cFos alone, we directly visualize binding to and movement on DNA. Of all these DNA-bound proteins, detailed analysis suggested 30-46% were homodimers. Furthermore, we constructed fluorescent protein fusions of cFos and cJun for FRET experiments. These constructs indicated complete dimerization of cJun, but although cFos could dimerize, its extent was reduced. Finally, to provide orthogonal confirmation of cFos binding to DNA we performed bulk-phase circular dichroism experiments that showed clear structural changes in DNA; these were found to be specific to the AP-1 consensus sequence. Taken together our results clearly show cFos can interact with DNA both as monomers and dimers independently of its archetypal partner, cJun

    The role of a disulfide bridge in the stability and folding kinetics of Arabidopsis thaliana cytochrome c6A

    Get PDF
    Cytochrome c 6A is a eukaryotic member of the Class I cytochrome c family possessing a high structural homology with photosynthetic cytochrome c 6 from cyanobacteria, but structurally and functionally distinct through the presence of a disulfide bond and a heme mid-point redox potential of + 71 mV (vs normal hydrogen electrode). The disulfide bond is part of a loop insertion peptide that forms a cap-like structure on top of the core α-helical fold. We have investigated the contribution of the disulfide bond to thermodynamic stability and (un)folding kinetics in cytochrome c 6A from Arabidopsis thaliana by making comparison with a photosynthetic cytochrome c 6 from Phormidium laminosum and through a mutant in which the Cys residues have been replaced with Ser residues (C67/73S). We find that the disulfide bond makes a significant contribution to overall stability in both the ferric and ferrous heme states. Both cytochromes c 6A and c 6 fold rapidly at neutral pH through an on-pathway intermediate. The unfolding rate for the C67/73S variant is significantly increased indicating that the formation of this region occurs late in the folding pathway. We conclude that the disulfide bridge in cytochrome c 6A acts as a conformational restraint in both the folding intermediate and native state of the protein and that it likely serves a structural rather than a previously proposed catalytic role. © 2011 Elsevier B.V. All rights reserved

    Downsizing the BAD BH3 peptide to small constrained α-helices with improved ligand efficiency

    Get PDF
    Bcl2 Homology (BH) proteins can either trigger or prevent programmed cell death or apoptosis. Deregulation of the BH protein family network leads to evasion of apoptosis, uncontrolled proliferation and is a hallmark of cancer. Inhibition of pro-survival BH proteins is a promising chemotherapeutic strategy for certain cancers. We have examined whether helix-constrained peptides based on the BAD BH3 domain (residues 103-127) can be downsized to much smaller more drug-like peptides. We report the preparation, structural characterisation, in vitro Bcl-xL inhibition and leukemic T-cell killing ability of 45 linear, mono-, bi- and tricyclic helical peptidomimetics between 8- and 19-residues in length. We show that the BAD BH3 can be downsized to 8- 14 residues and still maintain appreciable affinity for Bcl-xL. In addition, the binding efficiency indices (BEI) of the downsized mimetics are significantly higher than the BAD BH3 and similar stapled BH3 mimetics, approaching drug-like molecules. This suggests that bicyclic and monocyclic mimetics based on BH3 domains are much more efficient binding ligands than the longer peptides which they mimic
    • …
    corecore