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The evidence for alpha-synuclein (α-syn) as a key player in Parkinson’s disease (PD) pathology is compelling 

despite the fact that the native function of the protein has yet to be fully elucidated[1]. For example, synthetic 

α-syn aggregates that are characteristic of synucleinopathies lead to β-sheet rich amyloid structures similar to 

those found in Lewy bodies [2]. These structures lead to cell death with the majority of point-mutations 

associated with early onset PD (A30P, E46K, H50Q, G51D, A53T) clustered within a small region of the SNCA 

gene, which influence the rate and extent of aggregation which correlates with toxicity [3-6]. Until recently it 

was thought that the native state of α-syn was structurally disordered [7] before undergoing a structural 

conversion to β-sheet and amyloid. However, recent albeit controversial findings suggest that the native state 

is a monomer which self-associates on lipids to form a helical tetramer, that exists in the crowded molecular 

environment of the cell but does not accumulate in vitro [8]. Several α-syn point mutations have been 

hypothesized to destabilise this proposed tetramer, leading to increased levels of monomer which then 

aggregate [9]. As with the Aβ peptide associated with Alzheimer’s disease [10], recent studies have found that 

the heterogeneity of symptoms in synucleinopathies varies according to structurally different α-syn 

aggregates. Differences in conformation and oligomeric state have been associated with different neurotoxic 

species and may define different phenotypes [11]. 

 

Inhibitor design is most effective on the basis of detailed knowledge of the structure and function of a target 

protein. In the absence of a well-defined native structure for α-syn, many researchers have turned their focus 

toward the rational design of β-sheet breakers that can bind to and sequester the more accepted β-sheet 

precursors to amyloid formation. Amyloid structures are known to consist of multiple beta-strands that are 

stabilised by intermolecular interactions. These protein-protein interactions usually involve shallow surfaces 

stabilised by many points of contact and tend to lack the well-defined hydrophobic ligand-binding pocket most 

amenable to small drug-like inhibitors that might prevent or reverse amyloid formation [12]. Coupled with the 

resurgence of interest in peptide-based drug discovery, many groups have therefore turned to peptides to 

target such protein-protein interactions [13]. Short peptides are composed of natural amino acids and so their 

degradation is less likely than synthetic small organic molecules to be toxic, and less likely than proteins to be 

immunogenic since they fall below the threshold. In addition, they can now be quickly and cheaply synthesised 
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by chemical means and can undergo increasingly well-understood modifications that maintain desired binding 

properties but confer advantages such as improved membrane permeability, greater protease resistance and 

reduced plasma clearance rates. In relation to α-syn aggregation, peptide-based inhibitors have included β-

stand structures that bind α-syn on one face and prevent β-sheet extension by virtue of N-methyl groups or 

other moieties on another face [14]. This strategy brings resistance to the action of proteases while increasing 

β-sheet propensity, thereby pre-organizing the molecule into an optimal α-syn binding structure. Other 

inhibitors have included short peptides based on the 69-72 region of α-syn that have included a polyarginine 

appendage to assist cell uptake [15]. Another approach has used a fragment of the β-syn peptide to prevent α-

syn oligomerisation [16].  In all these examples, the focus has been confined to studying α-syn residues 71-82. 

This hydrophobic self-recognition element has been found to be toxic in isolation and is considered the key 

template for amyloid formation in the full-length α-syn protein [17, 18].  

 

Perhaps a more logical approach would be to stabilise either a defined monomeric structure or, if it exists, the 

helical tetrameric conformation, so as to prevent α-syn misfolding in the first instance by functioning as a 

kinetic stabiliser of a non--sheet and non-amyloid conformation. This may be a better strategy than searching 

for oligomer inhibitors, as these species can be difficult to define and therefore specifically target. This method 

has been used successfully via small molecules to stabilise the native dimeric form of transthyretin amyloidosis 

(ATTR) to prevent neuropathy and/or cardiomyopathy [19]. Model peptides have previously been locked into 

-helical tetramers on a scaffold, thereby regulating the rate of helix-sheet-amyloid conformational transitions 

and there is evidence of such templated helix bundles inhibiting β-sheet aggregation and amyloid formation 

[20, 21]. Other recent work utilises intracellular peptide library screening using a split reporter protein to 

identify inhibitors of α-syn aggregation [22]. This approach has been taken to circumvent the absence of a 

well-defined target structure, or indeed oligomeric state. Therefore no assumptions need be made regarding 

the conformation of the protein, the mode of binding, or the oligomeric state populated as a consequence. 

Rather, by screening libraries inside the cell, peptides derived using this approach were only selected if they 

bound to α-syn and conferred cell survival by lowering associated toxicity. This last point is crucial and has 

hindered the search for effective β-sheet breakers. Intracellular screening ensures that both target and library 

are expressed under native folding conditions within the crowded environment of the cell. Therefore peptides 

that are themselves toxic, bind to other proteins, form amyloid or are susceptible to proteases will tend to be 

rapidly cleared using this in vivo approach, and will complicate in vitro assays that need to be multiplexed 

screening systems. In our experiments, the libraries have usually been based on the 46-54 region of α-syn 

where the majority of mutations associated with early onset PD are found. In these experiments the identified 

inhibitors have been found to prevent α-syn amyloid formation and lead to significant reductions in toxicity. 

 

There are some exciting advances in the development of peptides and mimetics to bind to and prevent toxicity 

associated with α-syn amyloid formation. Coupled with recent developments in structural information relating 

to amyloid-based systems [23], and the increasing ability to readily modify peptides to deal with limitations in 

their druggability, there is now considerable optimism for peptide-based drug discovery for a-syn.  
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