46 research outputs found

    Current climate, isolation and history drive global patterns of tree phylogenetic endemism

    Full text link
    AimWe mapped global patterns of tree phylogenetic endemism (PE) to identify hotspots and test hypotheses about possible drivers. Specifically, we tested hypotheses related to current climate, geographical characteristics and historical conditions and assessed their relative importance in shaping PE patterns.LocationGlobal.Time periodWe used the present distribution of trees, and predictors covering conditions from the mid‐Miocene to present.Major taxa studiedAll seed‐bearing trees.MethodsWe compiled distributions for 58,542 tree species across 463 regions worldwide, matched these to a recent phylogeny of seed plants and calculated PE for each region. We used a suite of predictor variables describing current climate (e.g., mean annual temperature), geographical characteristics (e.g., isolation) and historical conditions (e.g., tree cover at the Last Glacial Maximum) in a spatial regression model to explain variation in PE.ResultsTree PE was highest on islands, and was higher closer to the equator. All three groups of predictor variables contributed substantially to the PE pattern. Isolation and topographic heterogeneity promoted high PE, as did high current tree cover. Among mainland regions, temperature seasonality was strongly negatively related to PE, while mean annual temperature was positively related to PE on islands. Some relationships differed among the major floristic regions. For example, tree cover at the Last Glacial Maximum was a positive predictor of PE in the Palaeotropics, while tree cover at the Miocene was a negative predictor of PE in the Neotropics.Main conclusionsGlobally, PE can be explained by a combination of geographical, historical and current factors. Some geographical variables appear to be key predictors of PE. However, the impact of historic and current climate variables differs considerably among the major floristic regions, reflecting their unique histories. Hence, the current distribution of trees is the result of globally relevant geographical drivers and regional climatic histories.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153237/1/geb13001.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153237/2/geb13001_am.pd

    The integration of empirical, remote sensing and modelling approaches enhances insight in the role of biodiversity in climate change mitigation by tropical forests

    Get PDF
    Tropical forests store and sequester high amounts of carbon and are the most diverse terrestrial cosystem. Studies show potentially important effects of biodiversity on carbon storage and equestration, but a complete understanding of this relationship across spatiotemporal scales relevant for climate change mitigation needs three approaches: empirical, remote sensing and ecosystem modelling. Here, we review the contribution of these individual approaches to the understanding of the relationship of biodiversity with carbon storage and sequestration, and find short-term and long term benefits of biodiversity at both broad and fine spatial scales. We argue that enhanced understanding is obtained by combining approaches, i.e., by using output from one approach to improve another approach and thus results in better input, validation and comparison between approaches. This can be further improved by integrating approaches through using ‘boundary objects’(i.e., variables) that can be understood and measured by all approaches, such as the diversity of leaf traits of the upper canopy and forest structure indices. Combining and especially integrating approaches will therefore lead to a better understanding of biodiversity effects on climate change mitigation. This is crucial for making sound policy decisions

    Modern pollen rain predicts shifts in plant trait composition but not plant diversity along the Andes–Amazon elevational gradient

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this record. Aims: Terrestrial ecosystems are changing in biodiversity, species composition and functional trait composition. To understand the underlying causes of these changes and predict the long-term resilience of the ecosystem to withstand future disturbances, we can evaluate changes in diversity and composition from fossil pollen records. Although diversity can be well estimated from pollen in temperate ecosystems, this is less clear for the hyperdiverse tropics. Moreover, it remains unknown whether functional composition of plant assemblages can be accurately predicted from pollen assemblage composition. Here, we evaluate how community-weighted mean (CWM) traits and diversity indices change along elevation. Location: Amazon–Andes elevation gradient in Peru. Methods: We used 82 modern pollen samples and 59 vegetation plots along the elevation gradient, and calculated CWM traits and diversity indices for each pollen sample and vegetation plot. We also quantified the degree to which taxa are over- or underrepresented by their pollen, by dividing the relative pollen abundance by the relative basal area abundance in the nearby vegetation survey plots (i.e. the R-rel values). Results: We found that CWM wood density increased, and CWM adult height and leaf area decreased with elevation. This change was well predicted by pollen assemblages, indicating that CWM trait–environment relationships based on pollen abundance data provide meaningful results. Diversity (richness, Shannon and Simpson) decreased with elevation for vegetation plots, but these trends could not be observed from pollen assemblages. Conclusions: Our results demonstrate that more research is needed to develop methods that lead to accurate diversity estimates from pollen data in these tropical ecosystems, but that CWM traits can be calculated from pollen data to assess spatial shifts in functional composition. This opens opportunities to calculate CWM traits from fossil pollen data sets in the tropics, with broad implications for improving our understanding and predictions of forest dynamics, functioning and resilience through time.Nederlandse Organisatie voor Wetenschappelijk Onderzoe

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Liana species decline in Congo basin contrasts with global patterns

    No full text
    Lianas, woody climbing plants, are increasing in many tropical forests, with cascading effects such as decreased forest productivity, carbon sequestration, and resilience. Possible causes are increasing forest fragmentation, CO2 fertilization, and drought. Determining the primary changing species and their underlying vital rates help explain the liana trends. We monitored over 17,000 liana stems for 13 yr in 20 ha of old-growth forest in the Congo Basin, and here we report changes and vital rates for the community and for the 87 most abundant species. The total liana abundance declined from 15,007 lianas in 1994 to 11,090 in 2001 to 9,978 in 2007. Over half (52%) of the evaluated species have significantly declining populations, showing that the community response is not the result of changes in a few dominant species only. Species density change (i.e., the change in number of individuals per hectare) decreased with mortality rate, tended to increase with recruitment rate, but was independent of growth rate. Species change was independent of functional characteristics important for plant responses to fragmentation, CO2, and drought, such as lifetime light requirements, climbing and dispersal mechanism, and leaf size. These results indicate that in Congo lianas do not show the reputed global liana increase, but rather a decline, and that elements of the reputed drivers underlying global liana change do not apply to this DR Congo forest. We suggest warfare in the Congo Basin to have decimated the elephant population, leading to less disturbance, forest closure, and declining liana numbers. Our results imply that, in this tropical forest, local causes (i.e., disturbance) override more global causes of liana change resulting in liana decline, which sharply contrasts with the liana increase observed elsewhere.</p

    Tropical Dry Forest Resilience to Fire Depends on Fire Frequency and Climate

    No full text
    Wildfires are becoming increasingly frequent and devastating in many tropical forests. Although seasonally dry tropical forests (SDTF) are among the most fire-threatened ecosystems, their long-term response to frequent wildfires remains largely unknown. This study is among the first to investigate the resilience in response to fire of the Chiquitano SDTF in Bolivia, a large ecoregion that has seen an unprecedented increase in fire intensity and frequency in recent years. We used remote sensing data to assess at a large regional and temporal scale (two decades) how fire frequency and environmental factors determine the resilience of the vegetation to fire disturbance. Resilience was measured as the resistance to fire damage and post-fire recovery. Both parameters were monitored for forested areas that burned once (F1), twice (F2), and three times (F3) between 2000 and 2010 and compared to unburned forests. Resistance and recovery were analyzed using time series of the Normalized Burn Ratio (NBR) index derived from Landsat satellite imagery, and climatic, topographic, and a human developmentrelated variable used to evaluate their influence on resilience. The overall resilience was lowest in forests that burned twice and was higher in forests that burned three times, indicating a possible transition state in fire resilience, probably because forests become increasingly adapted during recurrent fires. Climatic variables, particularly rainfall, were most influential in determining resilience. Our results indicate that the Chiquitano dry forest is relatively resilient to recurring fires, has the capacity to recover and adapt, and that climatic differences are the main determinants of the spatial variation observed in resilience. Nevertheless, further research is needed to understand the effect of the higher frequency and intensity of fires expected in the future due to climate change and land use change, which may pose a greater threat to forest resilience

    Forest structure drives changes in light heterogeneity during tropical secondary forest succession

    No full text
    This dataset contains the data on light measures and structural attributes in Neotropical secondary forests in Mexico

    Data from: Shifting species and functional diversity due to abrupt changes in water availability in tropical dry forests

    No full text
    Recent insights show that tropical forests are shifting in species composition, possibly due to changing environmental conditions. However, we still poorly understand the forest response to different environmental change drivers, which limits our ability to predict the future of tropical forests. Although some studies have evaluated drought effects on tree communities, we know little about the influence of increased water availability. Here, we evaluated how an increase in water availability caused by an artificial reservoir affected temporal changes in forest structure, species and functional diversity, and community‐weighted mean traits. Furthermore, we evaluated how demographical groups (recruits, survivors and trees that died) contributed to these temporal changes in tropical dry forests. We present data for the dynamics of forest change over a 10‐year period for 120 permanent plots that were far from the water’s edge before reservoir construction and are now close to the water’s edge (0–60 m). Plots close to the water’s edge had an abrupt increase in water availability, while distant plots did not. Plots close to the water’s edge showed an increase in species and functional diversity, and in the abundance of species with traits associated with low drought resistance (i.e., evergreen species with simple leaves and low wood density), whereas plots far from the water’s edge did not change. Changes in overall community metrics were mainly due to recruits rather than to survivors or dead trees. Overall stand basal area did not change because growth and recruitment were balanced by mortality. Synthesis. Our results showed that tropical dry forests can respond quickly to abrupt changes in environmental conditions. Temporal changes in vegetation metrics due to increased water availability were mainly attributed to recruits, suggesting that these effects are lasting and may become stronger over time. The lack of increase in basal area towards the water’s edge, and the shift towards higher abundance of soft‐wooded species, could reduce the carbon stored and increase the forest’s vulnerability to extreme weather events. Further “accidental” large‐scale field experiments like ours could provide more insights into forest responses and resilience to global change

    Conservative species drive biomass productivity in tropical dry forests

    No full text
    <p>Forests account for a substantial part of the terrestrial biomass storage and productivity. To better understand forest productivity, we need to disentangle the processes underlying net biomass change. We tested how above-ground net biomass change and its underlying biomass dynamics (biomass recruitment, growth and mortality) can be explained by four alternative and contested hypotheses; the soil fertility, biomass ratio, niche complementarity and vegetation quantity hypotheses. Above-ground biomass dynamics were evaluated over a 5-year period in 200 permanent sample plots in 8 tropical dry forests in Brazil, and related to soil fertility, community-weighted mean (CWM) traits that are important for carbon storage and sequestration (wood density, specific leaf area, maximum stem diameter and deciduousness), species richness, functional diversity and initial stand biomass. Initial stand biomass was the best predictor of all three processes of biomass dynamics, providing strong support for the vegetation quantity hypothesis. In these dry forests, the dominance of conservative species, rather than of acquisitive species, is associated with high biomass growth and storage, probably because their low specific leaf area and high wood density allow them to keep on functioning during drought stress. Paradoxically, high soil fertility (Ca) led to low biomass productivity, probably because of nutrient imbalance. In contrast to what is shown for controlled experiments, we found no support for niche complementarity (in terms of functional diversity or species richness) for forest productivity. Biomass storage was favoured by low- rather than high trait diversity, as most of the biomass is concentrated in species with large stem diameter and high wood density. Synthesis. Biomass dynamics are mainly shaped by vegetation quantity, and then by vegetation quality, in line with the mass ratio hypothesis. Dry forests show different trait-productivity relationships than wet forests, as stands with 'slow' trait values are 'fast' in terms of productivity. Diversity matters, but in a different way than expected; high trait diversity does not enhance productivity, but instead, does low trait diversity enhance carbon storage. Biomass dynamics are mainly shaped by vegetation quantity, and then by vegetation quality, in line with the mass ratio hypothesis. Dry forests show different trait-productivity relationships than wet forests, as stands with 'slow' trait values are 'fast' in terms of productivity. Diversity matters, but in a different way than expected; high trait diversity does not enhance productivity, but instead, does low trait diversity enhance carbon storage.</p
    corecore