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Highlights 

 The role of biodiversity on climate change mitigation by tropical forests remains poorly

understood. 

 Empirical, remote sensing and modelling studies provide complementary information.

 In more than 75% of the studies, biodiversity significantly affected carbon storage or

sequestration. 

 Biodiversity underpins short-term ecosystem functioning and assures long-term carbon storage

and sequestration in tropical forests. 

 Integrating approaches by using ‘boundary objects’ will lead to a comprehensive

understanding. 

*
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Abstract 33 

Tropical forests store and sequester high amounts of carbon and are the most diverse terrestrial 34 

ecosystem. Studies show potentially important effects of biodiversity on carbon storage and 35 

sequestration, but a complete understanding of this relationship across spatiotemporal scales relevant 36 

for climate change mitigation needs three approaches: empirical, remote sensing and ecosystem 37 

modelling. Here, we review the contribution of these individual approaches to the understanding of 38 

the relationship of biodiversity with carbon storage and sequestration, and find short-term and long-39 

term benefits of biodiversity at both broad and fine spatial scales. We argue that enhanced 40 

understanding is obtained by combining approaches, i.e., by using output from one approach to 41 

improve another approach and thus results in better input, validation and comparison between 42 

approaches. This can be further improved by integrating approaches through using ‘boundary objects’ 43 

(i.e., variables) that can be understood and measured by all approaches, such as the diversity of leaf 44 

traits of the upper canopy and forest structure indices. Combining and especially integrating 45 

approaches will therefore lead to a better understanding of biodiversity effects on climate change 46 

mitigation. This is crucial for making sound policy decisions. 47 

48 

49 

Keywords: biodiversity-ecosystem functioning, carbon sequestration, carbon storage, forest structure, 50 

functional diversity, REDD+, species diversity 51 

52 

53 

Introduction 54 

55 
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3 

Tropical forests play a major role in the global carbon cycle and are therefore important for climate 56 

change mitigation [1]. Tropical forests are also biodiversity hotspots and thus relevant for biodiversity 57 

conservation [2]. With ‘biodiversity’ we refer here to different vegetation properties: species and trait 58 

diversity, community-mean trait values and forest structure. Biodiversity is important for human 59 

wellbeing; it provides essential supporting, provisioning, cultural and regulating ecosystem services 60 

[3]. For example, biodiversity can potentially increase the capacity for carbon storage and 61 

sequestration, not only in temperate systems [e.g., 4,5] but also in highly diverse tropical forests [6]. In 62 

turn, this increased carbon uptake capacity may lead to a higher potential for climate mitigation. By 63 

evaluating how biodiversity affects carbon storage and sequestration, we can underscore the 64 

importance of tropical forests not only for nature conservation but also for climate mitigation. 65 

To fully understand the effect of biodiversity on carbon storage and sequestration (hereafter 66 

referred to as “carbon”), we first need to develop a mechanistic understanding of the short-term and 67 

local-scale effects of biodiversity on carbon. For this relationship to be relevant for global climate 68 

change mitigation, it should also occur at broader spatial and longer temporal scales that will have 69 

most impact and long-term benefit on climate change mitigation. Three approaches are needed to 70 

cover these different aspects of the relationship between biodiversity and climate change mitigation: 71 

an empirical approach to understand the short-term and local-scale relationship (Figure 1, Arrow 1), a 72 

remote sensing approach to scale up to broad spatial scales (Figure 1, Arrow 2) and an ecosystem 73 

modelling approach to scale up to long temporal scales (Figure 1, Arrow 3). These approaches are 74 

complementary in their ecological realism, spatial and temporal scale and contribute differently to the 75 

understanding of the biodiversity-carbon relationship and its consequences for global climate change 76 

mitigation (Table 1, Figure 1). 77 

In this paper, we advocate that combining and integrating empirical, remote sensing and ecosystem 78 

modelling approaches is needed to understand biodiversity effects on carbon across spatiotemporal 79 

scales. To show this, we perform a literature review to bring together evidence from the individual 80 

approaches to evaluate their contribution to the understanding of the biodiversity-carbon relationship. 81 

We then discuss how we can combine approaches to improve the assumptions, cross-validation and 82 

output of studies evaluating the biodiversity-carbon relationship. Finally, our study moves beyond the 83 
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concept of combining approaches to integration of approaches. This is essential to link, scale and 84 

translate among the approaches, and therefore to provide the best understanding of the biodiversity-85 

carbon relationship across spatiotemporal scales that are most relevant for climate change mitigation. 86 

87 

88 

Contribution of individual approaches – a review 89 

90 

Empirical studies – Empirical studies and experiments in the field that control for confounding factors 91 

provide insight into mechanisms underlying the biodiversity-carbon relationship, identify important 92 

aspects of biodiversity and provide evidence whether this relationship is strong enough (i.e., detectable 93 

and significant) to have a substantial effect on the functioning of natural systems. Empirical evidence 94 

for the biodiversity-carbon relationship is increasing rapidly, starting from conceptual ideas [7] to 95 

testing this relationship for different ecosystems [e.g., 4,5]. For tropical forests, however, the evidence 96 

is still emerging and scattered among local studies [e.g., 8,9] and regional to continental studies [e.g., 97 

6,10]. 98 

A recent review [11] evaluated 38 empirical studies on the role of different biodiversity indicators 99 

for carbon storage and dynamics (i.e., fluxes of carbon over time such as growth and mortality) in 100 

tropical forests. This review provided three main results. First, carbon dynamics increased most often 101 

with taxonomic diversity [e.g., 12], whereas carbon storage depended most on the average trait values 102 

of the tree community (i.e., community-mean traits) [13]. These results indicate that biodiversity is of 103 

major importance, but that different biodiversity indicators represent different mechanisms by which 104 

they contribute to carbon storage or dynamics: i) taxonomic (or functional) diversity can increase 105 

complementarity among species in their strategies to acquire and use resources, and as such increase 106 

overall carbon storage and sequestration [14] and ii) community-mean traits mainly represent the most 107 

dominant species in a community, which may most strongly influence carbon storage and 108 

sequestration [15]. A thorough understanding of the role of different biodiversity indicators on 109 

multiple carbon-related variables is therefore necessary to guide climate change mitigation policies. 110 

Second, the review [11] showed that this relationship is stronger in mature forests than in disturbed or 111 
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plantation forests, perhaps because of stronger competition and thus higher importance of biodiversity 112 

for carbon in denser forests. Third, the biodiversity-carbon relationship was stronger at broader spatial 113 

scales across sites (e.g., across Neotropical forests [6,10]), possibly because of stronger variation in 114 

biodiversity across sites at broader spatial scale. However, since empirical studies mostly capture 115 

processes at the plot or landscape scale, the role of spatial scale in the biodiversity–carbon relationship 116 

remains unclear. 117 

Remote sensing studies – Remote sensing allows to assess the biodiversity-carbon relationship at 118 

continuous and broader (i.e., regional to global) spatial scales relevant for policy. Remote sensing 119 

monitors changes in carbon and biodiversity over time, which is important for, among others, the 120 

measurement, verification and reporting of countries’ efforts to Reduce Emissions from Deforestation 121 

and forest Degradation (REDD+). However, remote sensing is based on indirect proxies for ecosystem 122 

processes and properties and is limited in analysing site-specific conditions such as soil fertility that 123 

can co-determine carbon. 124 

Several studies reviewed the potential and limitations of remote sensing based methods for 125 

measuring and monitoring carbon [16] and biodiversity [17,18] of tropical forests (for relevant 126 

advances in this field see Appendix S1). For forest carbon, wall-to-wall pan-tropical benchmark maps 127 

based on different techniques and resolutions have been developed [19–21]. However, remote sensing 128 

based maps of biodiversity are still rare [22], thus limiting the number of studies, especially broad 129 

scale, that evaluate biodiversity-carbon relationships. We identified and qualitatively assessed 10 130 

studies that evaluated this relationship (Appendix S2a-c). Nine of the ten studies show a positive 131 

relationship between biodiversity and carbon storage (no studies evaluated carbon sequestration), for 132 

different biodiversity indicators: plant species diversity (7 studies), fauna species diversity (2) and 133 

plant trait diversity (1). The strength of the biodiversity-carbon relationship varied considerably 134 

among studies (r = -0.01 – 0.83) but seems to be scale-independent: both the strongest and the weakest 135 

correlations were found at the fine scale (Appendix S2a). At least three possible reasons may explain 136 

the variation in correlation strength. First, differences in environmental conditions may explain this 137 

variation. Spatial variation in rainfall seasonality and species richness was significantly positively 138 

related to the strength of the correlation between species richness and carbon storage (Figure 2, 139 
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Appendix S2), indicating that species richness effects on carbon storage increase towards more 140 

seasonal and towards more diverse forests. Second, the strength may depend on the method used to 141 

derive biodiversity and carbon variables. When biodiversity and carbon storage are derived using the 142 

same method (e.g., LiDAR), they are not independent and may show a stronger correlation compared 143 

to when the variables are obtained from independent remote sensing sources. Third, the strength of 144 

this correlation may depend on the prediction accuracy of remote sensing indicators for biodiversity 145 

and carbon. A range of retrieval methods is used to estimate carbon storage and biodiversity indicators 146 

by relating remote sensing data sources to field observations (Appendix S2b), but an optimal method 147 

is still to be agreed on [23]. Although the small number of studies does not yet allow formal testing of 148 

the biodiversity-carbon relationship, the studies indicate that hotspots for carbon storage are related to 149 

hotspots for biodiversity. 150 

Modelling studies – Modelling studies allow assessment of the biodiversity-carbon relationship at 151 

temporal scales of up to centuries, and evaluate impacts of alternative future climate change scenarios 152 

and selected policy interventions. However, modelling is a simplification of the real world and 153 

therefore the representation of multiple interacting processes may miss relevant processes. 154 

Testing biodiversity-carbon relationships using ecosystem models requires a modelling framework 155 

that simulates physiological and morphological processes, plant competition and mortality, and 156 

functional and structural diversity. We found only three models that studied biodiversity-carbon 157 

relationships (Appendix S4). First, a dynamic plant functional trait model was applied to Australian 158 

forests [24]. This study found that, with modest climate change, plant trait diversity increased carbon 159 

sequestration in lowland forests, but this effect decreased with strong climate change (under SRES 160 

A1FI scenario). Second, species diversity weakly increased forest productivity in northern India 161 

(simulated by the remote-sensing based Carnegie-Ames-Stanford Approach (CASA) model) under 162 

current climate conditions [25]. Third, functional trait diversity increased forest  recovery of carbon 163 

stocks, and hence forest resilience, after climate change in a dynamic global vegetation model 164 

(DGVM) that accounts for competition and plant trait diversity (Lund-Potsdam-Jena managed Lands 165 

with Flexible Individual; LPJmL-FIT, [26]). 166 
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One reason for the limited amount of studies is the lack of a realistic representation of biodiversity 167 

in ecosystem models. A potentially useful modelling approach is the use of DGVMs. Initially, 168 

DGVMs had a very simplified representation of biodiversity, using several plant functional types [e.g., 169 

27], but recent model developments focussed on implementing functional diversity or plant trait 170 

diversity in the DGVM framework. DGVMs can now include variation in some plant traits, adaptive 171 

responses, and trade-offs between traits [e.g., 28] (see Appendix S5 for more details on the models). 172 

These model developments will allow testing the biodiversity-carbon relationship at various temporal 173 

scales, including the effect of biodiversity on forest resilience. 174 

175 

176 

The biodiversity–carbon relationship: state of the art 177 

178 

We evaluated the biodiversity-carbon relationship using three complementary approaches, and found 179 

that biodiversity significantly and positively affected carbon storage and/or sequestration in the 180 

majority of the empirical studies (75%) and remote sensing studies (90%) and a weak positive effect 181 

on long-term carbon in the most recent models. These results extend the well-known findings from 182 

experimental studies and temperate systems that biodiversity matters for ecosystem functioning in 183 

tropical forests. 184 

The different approaches provided complementary information on the role of spatial scale. Among 185 

empirical studies, the biodiversity-carbon relationship was stronger at large spatial scale (e.g., across 186 

Neotropical forests) than at fine spatial scale (e.g., within one forest type). In contrast, remote sensing 187 

studies found that the strength of the biodiversity-carbon relationship did not vary with spatial scale, 188 

perhaps because of the indirect way in which they assess both biodiversity and carbon. Modelling 189 

studies showed that biodiversity is important for carbon not only at short, but also at long temporal 190 

scales where it serves as an ‘insurance’ against environmental hazards. Hence, although scale seems to 191 

affect the strength of the biodiversity-carbon relationship, biodiversity underpins short-term 192 

ecosystem functioning and assures long-term carbon storage and sequestration in tropical forests, 193 

at both fine and broad spatial scales. These results indicate that biodiversity conservation is not a 194 
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mere co-benefit of management for REDD+, but should be considered as a requirement for long-term 195 

effective REDD+ activities [29]. 196 

197 

198 

Combining approaches 199 

200 

To go beyond individual contributions (Figure 3a), we advocate to combine approaches to improve 201 

the quality of input data, refine assumptions, facilitate cross-validation and evaluate the robustness of 202 

relationships across approaches (Figure 3b). We here discuss opportunities to combine the three 203 

approaches. First, empirical and remote sensing approaches can be combined (Figure 3b, Arrow 1) to 204 

validate remote sensing results, e.g. by evaluating the detection algorithm, and to facilitate accurate 205 

upscaling of local observations to broad spatial scales. Second, empirical and ecosystem modelling 206 

approaches can be combined (Figure 3b, Arrow 2) in several ways. For example, the mechanisms 207 

underlying biodiversity-carbon relationships found in empirical studies can be included in modelling 208 

approaches and used to refine model assumptions for more accurate long-term predictions. 209 

Furthermore, findings from fine-scale empirical studies can be tested in models over longer temporal 210 

scales, thus facilitating the generalisation of the mechanisms. Third, remote sensing and ecosystem 211 

modelling approaches can be combined (Figure 3b, Arrow 3) by using remote sensing data as an input 212 

for ecosystem models [30], or to validate modelled patterns and processes [31]. 213 

The combination of the three approaches would thus allow better exploration of the mechanisms 214 

behind the biodiversity-carbon relationship at broad spatiotemporal scales. Hence, combining 215 

approaches in such ways – by using output from one approach to improve another approach – leads to 216 

opportunities for better input, validation and scaling. 217 

218 

219 

Integrating approaches 220 

221 
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Integrating approaches moves beyond combining them by using similar indicators as input and/or 222 

output. Using similar indicators allows direct comparison among, and scaling between, approaches to 223 

better understand biodiversity-carbon relationships. To avoid translation problems of indicators across 224 

approaches, we propose to use ‘boundary objects’, which are indicators that “are both adaptable to 225 

different viewpoints [in our case approaches] and robust enough to maintain identity across them” 226 

[32]. Boundary objects are frequently used in interdisciplinary studies to communicate across 227 

scientific disciplines (such as ‘resilience’ and ‘ecosystem services’ [33,34]). Using boundary objects 228 

that can be measured by the three research approaches could greatly facilitate scaling among them and 229 

advance our understanding of biodiversity effects on climate change mitigation. 230 

Several potential boundary objects can be used for carbon and biodiversity (see examples in Table 231 

2). Indicators for aboveground carbon storage are relatively easy to quantify by all approaches and are 232 

already being used. Aboveground net carbon change (i.e. net carbon uptake or net biomass growth at 233 

the ecosystem level) can serve as a boundary object for carbon sequestration as it can be measured by 234 

all approaches albeit using different methodologies. Boundary objects for biodiversity are more 235 

complicated to define as the concept of biodiversity is broadly defined, ranging from genetic to 236 

ecosystem diversity (Convention on Biological Diversity). In this review, we separated biodiversity 237 

into three important groups of vegetation properties: species and trait diversity, community-mean trait 238 

values and forest structure (Table 2 [cf. 11]). A useful boundary object for biodiversity is the diversity 239 

and the mean of leaf traits of the upper canopy, such as specific leaf area [35] and leaf nutrient 240 

concentrations [36]. Leaf trait diversity can be easily measured in the field [37] by empirical studies, 241 

can be seen from space for the upper canopy by new hyperspectral remote sensing techniques [e.g., 242 

35] and are explicitly included in recently developed dynamic global vegetation models [e.g., 38].243 

Indicators for forest structure, such as crown size distribution of the upper canopy, can also serve as 244 

boundary object, as they can be captured by all three approaches (Table 1). These example boundary 245 

objects can be similarly measured by all approaches and therefore directly used to scale between 246 

approaches. Such boundary objects may thus allow for integration of empirical, remote sensing and 247 

modelling approaches. This, in turn, will help advancing our understanding of biodiversity effects on 248 

carbon across spatiotemporal scales, and thus on climate change mitigation (Figure 1). 249 
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250 

251 

Concluding remarks 252 

Empirical, remote sensing and ecosystem modelling approaches each have their complementary 253 

strengths in evaluating biodiversity effects on carbon storage and sequestration. These individual 254 

approaches show that biodiversity is generally important for short-term and long-term carbon storage 255 

and sequestration, indicating that biodiversity conservation is not only a co-benefit of REDD+ 256 

activities, but is an integral and crucial component of effective REDD+ implementation [29]. 257 

However, we advocate that combining, and especially integrating these three approaches will provide 258 

an enhanced understanding of how biodiversity contributes to climate change mitigation. We propose 259 

the use of boundary objects as a means of integrating all three approaches and span across spatial and 260 

temporal scales relevant for climate change mitigations. Such integration of approaches can provide 261 

input to guide society and policies such as REDD+ to reach the goals of the UNFCCC Paris 262 

Agreement. 263 
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Table 1: Overview of the differences among empirical, remote sensing and ecosystem modelling approaches in terms of: spatial scale, temporal scale, 275 

biodiversity variables that can be accurately estimated, how likely it is that carbon estimates are correct, the workload per unit area or time evaluated and their 276 

main strength. Please note that this overview highlights the main aspects per approach that is relevant for this manuscript, rather than that it provides an 277 

exhaustive overview of the properties of the approaches. 278 

279 

280 

Biodiversity  variables 

that can accurately be 

estimated

How likely 

carbon estimate 

is correct?

Workload per 

unit area or time 

evaluated

Main strength

 Small Large  Short Long 

Empirical Species, functional traits, 

forest structure

Very likely High Underpinning 

mechanisms

Remote sensing Forest structure Likely Medium Spatial scaling

Ecosystem modelling Functional groups, forest 

structure

Likely Medium Temporal scaling

Spatial scale Temporal scale
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Table 2: Potential ‘boundary objects’ that can be used to integrate empirical, remote sensing and ecosystem modelling approaches. We identify three potential 281 

boundary objects for ‘biodiversity’ (species, functional trait and structural diversity) and two potential boundary objects for ‘carbon’ (storage and net change). 282 

Empirical studies Remote sensing studies Ecosystem modelling studies 

Biodiversity Species and trait diversity Number of species 

Functional diversity (based on 

leaf traits) 

Number of species, obtained 

from imaging spectroscopy. 

Variation in specific leaf area 

and leaf nutrient 

concentrations from imaging 

spectroscopy and 

hyperspectral imaging 

Number of functional groups. 

Distribution of specific leaf area 

and other trait values in the 

modelled tree community 

Trait mean Community-weighted mean leaf 

traits 

Leaf trait values of tree canopy 

averaged by area 

Average trait values of the 

modelled tree community. 

Forest structure Variation in crown size (e.g. 

diameter) 

Variation in crown shape and 

diameter from LiDAR 

Variation in crown size 

Carbon Storage Standing stocks per unit area Standing stocks per unit area Standing stocks per unit area 

Sequestration Aboveground biomass growth or 

net change 

Aboveground net biomass 

change 

Aboveground gross or net 

primary productivity 

283 
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284 

Figure 1: Conceptual framework showing how three different research approaches (empirical, remote 285 

sensing and ecosystem modelling) contribute to the understanding of biodiversity effects on carbon 286 

sequestration and storage (“carbon”) and, hence, on climate change mitigation. Their main advantage 287 

and contribution to assessing the role of biodiversity for climate change mitigation is displayed in 288 

boxes, although not being exhaustive. Empirical studies (green, Arrow 1) provide a mechanistic 289 

understanding of biodiversity effects on carbon, both measured at fine spatial scales (e.g., local) and 290 

short temporal scales (e.g., a decade). Remote sensing studies (blue, Arrow 2) scale up to broader 291 

spatial scales (e.g., continental), and ecosystem modelling (orange, Arrow 3) scale up to longer 292 

temporal scales (e.g., centuries). Remote sensing scales up variables (biodiversity and carbon), 293 

whereas ecosystem models generally use the relationship to scale up. 294 
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295 

Figure 2: Spatial correlation between remote sensing-derived tree species richness and aboveground 296 

biomass for tropical forest in different biogeographic zones in lowland Bolivia (see Appendix S3 for 297 

methods). The correlation strength increased with rainfall seasonality (i.e., the coefficient of variation 298 

of monthly rainfall; P < 0.001, t = 4.3, N = 53) and with predicted species richness (P < 0.001, t = 5.4, 299 

N = 53). In both regression analyses, we included the size of the area as a variable to correct for 300 

possible effects of differences in pixel number on which the correlation coefficient was based. Rainfall 301 

seasonality and predicted species richness were not significantly correlated (r = 0.20, P = 0.12, t = 302 

1.55). Data were obtained from Kooistra et al. [39]. 303 
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304 

Figure 3: Representation of the differences between a) using individual approaches (E and green: 305 

empirical; R and blue: remote sensing; M and orange: ecosystem modelling) to compare results, b) 306 

combining approaches (e.g., validations and spatial and temporal upscaling) and c) integrating 307 

approaches through the use of ‘boundary objects’, for example by using diversity in leaf traits or 308 

indices of forest structure, which can be measured in empirical field studies, scale up over larger areas 309 

using remote sensing and included in modelling studies. Possible combinations are: empirical and 310 

remote sensing approaches to scale the biodiversity-carbon relationship to broader spatial scales 311 

(Arrow 1), empirical and modelling approaches to scale this relationship to larger temporal scales 312 

(Arrow 2) and remote sensing and modelling approaches for further validation and improvements of 313 

the approaches (Arrow 3). Integrating approaches seeks for boundary objects, i.e. indicators that can 314 

be quantified by each approach (number 4 in the figure). For examples of boundary objects, see Table 315 

2.316 
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