58 research outputs found
Comparative analysis of right element mutant lox sites on recombination efficiency in embryonic stem cells
<p>Abstract</p> <p>Background</p> <p>Cre-mediated site-specific integrative recombination in mouse embryonic stem (ES) cells is a useful tool for genome engineering, allowing precise and repeated site-specific integration. To promote the integrative reaction, a left element/right element (LE/RE) mutant strategy using a pair of <it>lox </it>sites with mutations in the LE or RE of the <it>lox </it>sequence has previously been developed. Recombination between LE and RE mutant <it>lox </it>produces a wild-type <it>lox</it>P site as well as an LE+RE double mutant <it>lox </it>site, which has mutations in both sides and less affinity to Cre, resulting in stable integration. We previously demonstrated successful integrative recombination using <it>lox</it>71 (an LE mutant) and <it>lox</it>66 (an RE mutant) in ES cells. Recently, other LE/RE mutant <it>lox </it>sites showing higher recombination efficiency in <it>Escherichia coli </it>have been reported. However, their recombination efficiency in mammalian cells remains to be analyzed.</p> <p>Results</p> <p>Using ES cells, we compared six RE mutant <it>lox </it>sites, focusing on their recombination efficiency with <it>lox</it>71. All of the RE mutant <it>lox </it>sites showed similar recombination efficiency. We then analyzed the stability of the recombined product, i.e., the LE+RE double mutant <it>lox </it>site, under continuous and strong Cre activity in ES cells. Two RE mutants, <it>lox</it>JTZ17 and <it>lox</it>KR3, produced more stable LE+RE double mutant <it>lox </it>than did the <it>lox</it>66/71 double mutant.</p> <p>Conclusion</p> <p>The two mutant RE <it>lox </it>sites, <it>lox</it>JTZ17 and <it>lox</it>KR3, are more suitable than <it>lox</it>66 for Cre-mediated integration or inversion in ES cells.</p
Predicting effects of climate change on productivity and persistence of forest trees
Global climate change increases uncertainty in sustained functioning of forest ecosystems. Forest canopies are a key link between terrestrial ecosystems, the atmosphere, and climate. Here, we introduce research presented at the 66th meeting of the Ecological Society of Japan in the symposium “Structure and function of forest canopies under climate change.” Old-growth forest carbon stores are the largest and may be the most vulnerable to climate change as the balance between sequestration and emission could easily be tipped. Detailed structural analysis of individual large, old trees shows they are allocating wood to the trunk and crown in patterns that cannot be deduced from ground, thus can be used to more accurately quantify total forest carbon and sequestration. Slowly migrating species sensitive to novel climatic conditions will have to acclimate at the individual level. Accounting for physiological responses of trees to climate change will improve predictions of future species distributions and subsequent functioning of forest ecosystems. Field experiments manipulating temperature and precipitation show how trees compensate physiologically to mitigate for higher temperatures and drought. However, it is difficult to measure acclimation responses over long timeframes. Intraindividual trait variation is proposed as an indicator of acclimation potential of trees to future conditions and suggests that acclimation potential may vary among regional populations within a species. Integrating whole-tree structural data with physiological data offers a promising avenue for understanding how trees will respond to climatic shifts
MicroRNA-142 Critically Regulates Group 2 Innate Lymphoid Cell Homeostasis and Function
Innate lymphoid cells are central to the regulation of immunity at mucosal barrier sites, with group 2 innate lymphoid cells (ILC2s) being particularly important in type 2 immunity. In this study, we demonstrate that microRNA(miR)-142 plays a critical, cell-intrinsic role in the homeostasis and function of ILC2s. Mice deficient for miR-142 expression demonstrate an ILC2 progenitor_biased development in the bone marrow, and along with peripheral ILC2s at mucosal sites, these cells display a greatly altered phenotype based on surface marker expression. ILC2 proliferative and effector functions are severely dysfunctional following Nippostrongylus brasiliensis infection, revealing a critical role for miR-142 isoforms in ILC2-mediated immune responses. Mechanistically, Socs1 and Gfi1 expression are regulated by miR-142 isoforms in ILC2s, impacting ILC2 phenotypes as well as the proliferative and effector capacity of these cells. The identification of these novel pathways opens potential new avenues to modulate ILC2-dependent immune functions
WDR11-mediated Hedgehog signalling defects underlie a new ciliopathy related to Kallmann syndrome
WDR11 has been implicated in congenital hypogonadotropic hypogonadism (CHH) and Kallmann syndrome (KS), human developmental genetic disorders defined by delayed puberty and infertility. However, WDR11's role in development is poorly understood. Here, we report that WDR11 modulates the Hedgehog (Hh) signalling pathway and is essential for ciliogenesis. Disruption of WDR11 expression in mouse and zebrafish results in phenotypic characteristics associated with defective Hh signalling, accompanied by dysgenesis of ciliated tissues. Wdr11-null mice also exhibit early-onset obesity. We find that WDR11 shuttles from the cilium to the nucleus in response to Hh signalling. WDR11 regulates the proteolytic processing of GLI3 and cooperates with the transcription factor EMX1 in the induction of downstream Hh pathway gene expression and gonadotrophin-releasing hormone production. The CHH/KS-associated human mutations result in loss of function of WDR11. Treatment with the Hh agonist purmorphamine partially rescues the WDR11 haploinsufficiency phenotypes. Our study reveals a novel class of ciliopathy caused by WDR11 mutations and suggests that CHH/KS may be a part of the human ciliopathy spectrum.Peer reviewe
NSrp70 is a novel nuclear speckle-related protein that modulates alternative pre-mRNA splicing in vivo
Nuclear speckles are known to be the storage sites of mRNA splicing regulators. We report here the identification and characterization of a novel speckle protein, referred to as NSrp70, based on its subcellular localization and apparent molecular weight. This protein was first identified as CCDC55 by the National Institutes of Health Mammalian Gene Collection, although its function has not been assigned. NSrp70 was colocalized and physically interacted with SC35 and ASF/SF2 in speckles. NSrp70 has a putative RNA recognition motif, the RS-like region, and two coiled-coil domains, suggesting a role in RNA processing. Accordingly, using CD44, Tra2β1 and Fas constructs as splicing reporter minigenes, we found that NSrp70 modulated alternative splice site selection in vivo. The C-terminal 10 amino acids (531–540), including 536RD537, were identified as a novel nuclear localization signal, and the region spanning 290–471 amino acids was critical for speckle localization and binding to SC35 and ASF/SF2. The N-terminal region (107–161) was essential for the pre-mRNA splicing activity. Finally, we found that knockout of NSrp70 gene in mice led to a lack of progeny, including fetal embryos. Collectively, we demonstrate that NSrp70 is a novel splicing regulator and essentially required early stage of embryonic development
HOT1 is a mammalian direct telomere repeat-binding protein contributing to telomerase recruitment.
Telomeres are repetitive DNA structures that, together with the shelterin and the CST complex, protect the ends of chromosomes. Telomere shortening is mitigated in stem and cancer cells through the de novo addition of telomeric repeats by telomerase. Telomere elongation requires the delivery of the telomerase complex to telomeres through a not yet fully understood mechanism. Factors promoting telomerase-telomere interaction are expected to directly bind telomeres and physically interact with the telomerase complex. In search for such a factor we carried out a SILAC-based DNA-protein interaction screen and identified HMBOX1, hereafter referred to as homeobox telomere-binding protein 1 (HOT1). HOT1 directly and specifically binds double-stranded telomere repeats, with the in vivo association correlating with binding to actively processed telomeres. Depletion and overexpression experiments classify HOT1 as a positive regulator of telomere length. Furthermore, immunoprecipitation and cell fractionation analyses show that HOT1 associates with the active telomerase complex and promotes chromatin association of telomerase. Collectively, these findings suggest that HOT1 supports telomerase-dependent telomere elongation
Two transgenic mouse models for beta subunit components of succinate-CoA ligase yielding pleiotropic metabolic alterations
Succinate-CoA ligase is a heterodimer enzyme composed of Suclg1 -alpha- and a substrate-specific Sucla2 or Suclg2 -beta- subunit yielding ATP or GTP, respectively. In humans, the deficiency of this enzyme leads to encephalomyopathy with, or without methylmalonyl aciduria, in addition to resulting in mitochondrial DNA depletion. We generated mice lacking either one Sucla2 or Suclg2 allele. Sucla2 heterozygote mice exhibited tissue- and age-dependent decreases in Sucla2 expression associated with decreases in ATP-forming activity, but rebound increases in cardiac Suclg2 expression and GTP-forming activity. Bioenergetic parameters including substrate-level phosphorylation were not different between wild type and Sucla2 heterozygote mice unless a submaximal pharmacological inhibition of succinate-CoA ligase was concomitantly present. mtDNA contents were moderately decreased, but blood carnitine esters were significantly elevated. Suclg2 heterozygote mice exhibited decreases in Suclg2 expression but no rebound increases in Sucla2 expression or changes in bioenergetic parameters. Surprisingly, deletion of one Suclg2 allele in Sucla2 heterozygote mice still led to a rebound but protracted increase in Suclg2 expression, yielding double heterozygote mice with no alterations in GTP-forming activity or substrate-level phosphorylation, but more pronounced changes in mtDNA content and blood carnitine esters, and an increase in succinate dehydrogenase activity. We conclude that a partial reduction in Sucla2 elicits rebound increases in Suclg2 expression which is sufficiently dominant to overcome even a concomitant deletion of one Suclg2 allele, pleiotropically affecting metabolic pathways associated with succinate-CoA ligase. These results as well as the availability of the transgenic mouse colonies will be of value in understanding succinate-CoA ligase deficiency
IGSF4 is a novel TCR ζ-chain–interacting protein that enhances TCR-mediated signaling
The expression of cell surface molecule, IGSF4, on human and mouse T cells associate with the TCR ζ-chain and colocalizes to the c-SMAC to enhance cytokine production and adhesion to APCs
- …