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Abstract

Global climate change increases uncertainty in sustained functioning of forest

ecosystems. Forest canopies are a key link between terrestrial ecosystems, the

atmosphere, and climate. Here, we introduce research presented at the 66th

meeting of the Ecological Society of Japan in the symposium “Structure and

function of forest canopies under climate change.” Old-growth forest carbon

stores are the largest and may be the most vulnerable to climate change as the

balance between sequestration and emission could easily be tipped. Detailed

structural analysis of individual large, old trees shows they are allocating wood

to the trunk and crown in patterns that cannot be deduced from ground, thus

can be used to more accurately quantify total forest carbon and sequestration.

Slowly migrating species sensitive to novel climatic conditions will have to

acclimate at the individual level. Accounting for physiological responses of

trees to climate change will improve predictions of future species distributions

and subsequent functioning of forest ecosystems. Field experiments manipulat-

ing temperature and precipitation show how trees compensate physiologically

to mitigate for higher temperatures and drought. However, it is difficult to

measure acclimation responses over long timeframes. Intraindividual trait vari-

ation is proposed as an indicator of acclimation potential of trees to future con-

ditions and suggests that acclimation potential may vary among regional
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populations within a species. Integrating whole-tree structural data with physi-

ological data offers a promising avenue for understanding how trees will

respond to climatic shifts.

KEYWORD S

canopy structure, climate adaptation, physiological acclimation, population dynamics,

reproduction

1 | INTRODUCTION

Trees connect the atmosphere to terrestrial ecosystems on
~40% of Earth's land surface (Bastin et al., 2019), compris-
ing biodiverse forests responsible for ~46% of global terres-
trial carbon flux (Pan et al., 2011). Biodiversity and carbon
storage are linked; more organisms with overlapping func-
tional roles provide functional redundancy. Such redun-
dant systems are more resilient to abiotic perturbation,
disease and insect outbreaks (Thompson, Mackey,
McNulty, & Mosseler, 2009; Yachi & Loreau, 2007), lead-
ing to more stable forest cover and captured carbon
through time (Osuri et al., 2019). Global climate change is
altering basic physiological processes like photosynthesis
and respiration (Kirschbaum, 2004) affecting individual-
level integrated processes like growth (Charney
et al., 2016), mortality (Carnicer et al., 2011) and phenol-
ogy (Menzel, Sparks, Estrella, & Roy, 2006). Such alter-
ations will change ecosystem and community structure as
well as ability of forests to act as carbon sinks and will
likely have cascading effects on geographical-scale species
distributions (Iverson & McKenzie, 2013). Therefore,
predicting which species persist in an ecosystem and how
they maintain productivity will provide insights for the
future composition, structure and function of forest
ecosystems.

Whether or not a species persists in a forest, either
through range-shift or local extinction, is partially depen-
dent on both indirect and direct effects of climate change
(Figure 1a). Indirect effects operate through intermediate
mechanisms, and as a consequence, are less predictable.
Disturbance regime change (Dale et al., 2001) and altered
competitive interactions (e.g., Bolte et al., 2010) are two
examples of indirect effects. Outcomes of such changes are
governed by erratic or heterogeneous processes
(e.g., frequency and spatial variability of fires and storms),
permit ecological feedbacks (e.g., altered competition with
cascading effects), and are probably not stationary through
time. Such an assortment of interacting factors makes pre-
diction of species persistence for periods beyond tree
lifespans (decades to millennia) highly uncertain.

Some species are likely limited by direct effects of cli-
mate. Direct effects result when climatic parameters

approach physiological limits and affect tree function.
Examples include the ability to photosynthesize at high
temperature (Kirschbaum, 2004) or conduct water during
drought (Johnson et al., 2018). Physiological and growth
responses may be more predictable, especially if species
are experiencing climatic extremes because we have
sophisticated models of physiological processes based on
experimental manipulation (Zimmermann et al., 2009).
Physiological response to manipulated temperature, CO2

concentration and water availability can be elicited and
measured during the course of a typical 1–3-year study.
Identifying physiological limits of species will help
researchers describe their potential to survive and grow
under a changing climate. The most vulnerable species
will be found in restricted ranges closely tracking a nar-
row set of climatic variables, such as may be the case
with the range of Picea sitchensis being largely restricted
to coastal environments (Burns & Honkala, 1990).

FIGURE 1 Expected cascading effects (direct and indirect) of

climate change on forest ecosystems from physiological to

geographical processes (a). Being slow-migrating, sessile organisms,

extant trees will have to acclimate to climate change in situ or, in

some extreme cases, face mortality and ultimately local extinction

resulting in ecosystem shifts (b, illustration by Hikaru Ishii) [Color

figure can be viewed at wileyonlinelibrary.com]
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Forest productivity may be fundamentally altered if
particularly vulnerable, yet ecologically important species
are lost due to physiological stress. To illustrate, Tsuga
heterophylla from the Pacific Northwest, United States is
shallow-rooted and the most sensitive to moisture stress
of any co-occurring species (Lassoie, Hinckley, &
Grier, 1985; Mathys, Coops, & Waring, 2014). It is numer-
ically dominant, shade-tolerant and accounts for ~21% of
leaf area but only ~13% of total mass in moist
Pseudotsuga-Tsuga forests (Sillett et al., 2018). Due to
these attributes, T. heterophylla disproportionately con-
tributes to the productive capacity in the mid-canopy and
understory. Because higher temperatures increase evapo-
transpiration, and summers are dry in the Pacific North-
west, T. heterophylla is more likely to track poleward
movement of temperature than species with wider eco-
logical amplitude like co-occurring Pseudotsuga menziesii
(Lassoie et al., 1985).

Physiologically vulnerable species whose ranges are
receding on one front and constrained on another might
need to acclimate to climate change in situ (Figure 1b).
Climate warming is progressing at faster rates than any
previous climatic transition in Earth's history (Visser,
2008; Zachos, Pagani, Sloan, Thomas, & Billups, 2001).
The global mean estimate of the velocity of pole-ward
movement of warmer climate zones is 0.42 km/year
(Lorie et al., 2009). During past climatic transitions,
many plants responded by migrating (Brubaker, 1988;
Wing et al., 2005). Currently, however, many species are
not migrating as fast as climate zones would imply for
reasons discussed above and also because competing
species persist in the migration path (Bertrand et al.,
2011). Furthermore, contemporary landscapes are
highly fragmented, comprising extensive areas of human
influence which act as migration barriers (Meier,
Lischke, Schmatz, & Zimmermann, 2012).

During the 66th meeting of the Ecological Society of
Japan, in a symposium titled “Structure and function of
forest canopies under climate change,” we explored
responses of carbon gain, physiology and trait variability
of trees to varying temperature and moisture stress.
Here, we summarize and synthesize the findings of
these talks with other research. Several questions
remain largely unanswered: Can individual trees accli-
mate physiologically to warmer temperatures and
changes in precipitation pattern? How will this affect
structure and function of forest ecosystems in the
future? Are acclimation potentials of various forest spe-
cies sufficient to compensate for physiological chal-
lenges imposed by climate change? In this review, we
explore and propose ways in which forest canopy
research can help us better predict future effects of cli-
mate on forest composition, structure and function.

2 | ESTIMATING PRODUCTIVITY
IN LARGE TREES THROUGH
STRUCTURAL ANALYSIS

Old-growth forests store more carbon than younger suc-
cessional stages because they contain distinguishing fea-
tures such as large emergent trees, abundant snags and
logs and high understory productivity (Spies & Franklin,
1991; Van Pelt, Sillett, Kruse, Freund, & Kramer, 2016).
The carbon debt incurred by cutting old forests is so large
that it is more beneficial to the global carbon budget (and
ecologically) to reserve remaining old-growth forests and
accelerate development of mature forest to old-growth
conditions rather than harvesting and capturing the car-
bon off-site in wood products and buildings (Franklin,
Johnson, & Johnson, 2018; Law et al., 2018). However,
because of their relative inaccessibility, quantifying how
much carbon large trees and old forest store is not trivial.

Because large trees are so important for storing car-
bon and remain an active sink into old age (Bastin et al.,
2019; Luyssaert et al., 2008), accurate means of quantify-
ing their size and growth is needed (Sillett, Van Pelt, Car-
roll, Campbell-Spickler, & Antoine, 2020). The ability to
predict contributions of the largest individuals will
improve area-based estimates of forest carbon. Although
it is socially unacceptable to cut down the largest trees to
measure them, including them in allometric equations
for predicting biomass and growth is critical to eliminate
the danger of extrapolation (Figure 2). Kramer et al. (2018)
presented a method called “crown mapping” as an accu-
rate way to quantify biomass and growth of large trees.
Crown mapping entails tree climbing, three-dimensional
mapping and core sampling large trees at multiple
heights (Kramer et al., 2018).

Large and old trees develop irregular basal and crown
shapes, therefore typical measurements (i.e., basal diame-
ter and height) are less accurate predictors in biomass
and growth equations than equations accounting for old-
tree attributes (Ishii, Sillett, & Carroll, 2017). Modified
measurements accounting for circumferential air-spaces
(functional diameter), inflated diameters due to but-
tressing (diameter above buttress) and crown volume
explain from 97 to 99% of dry biomass variability in even
the largest trees (Ishii et al., 2017; Sillett et al., 2020;
Sillett, Van Pelt, Carroll, Campbell-Spickler, & Antoine,
2019). Incremental growth can be masked when using
repeated basal diameter measurements to infer biomass
change because basal irregularities increase measure-
ment error. Additionally, narrow basal ring increments of
large trees may imply negligible growth even if the trees
are growing rapidly elsewhere. For example, an increas-
ing proportion of diameter growth is allocated to bra-
nches and higher along the trunk as trees age (Ishii et al.,
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2017; Kramer et al., 2018; Sillett et al., 2010). Despite
growth efficiency (defined here as: leaf mass/biomass
increment) declines with age, crown mapping shows that
individual tree biomass increases with age such that indi-
vidual redwood trees from ~500 to >2,000 years old can
produce an average of ~120 to ~300 kg/year and up to
770 kg/year of dry biomass (Sillett et al., 2015; Sillett
et al., 2020). Although rapidly growing fully stocked
second-growth forests can produce more biomass per
hectare per year than old forests, the greater standing
biomass added to substantial growth of large trees in old
forests makes them important conservation priorities.
For example, plantation redwood can produce ~10 Mg/
ha/year more than the heaviest old-growth forest but
contain only 227 versus 4,152 Mg/ha of the live biomass,
respectively (Sillett et al., 2020).

To prepare forests for climate change, managers are
using spatially variable harvests and thinning because
these methods are expected to increase ecosystem resis-
tance (ability to resist change) to drought and fire
(Restaino et al., 2019), as well as resilience (ability to
rebound) after disturbance (Churchill et al., 2013). Trees
remaining after such treatments grow and develop with
varying numbers of competitors, thus tree and forest car-
bon gain can be difficult to predict unless equations
account for variable tree spatial distribution, crown form,
and growth rates. Kramer, Sillett, Van Pelt, and Frank-
lin (2019) presented a chronosequence of tree-crown
development in P. sitchensis from 100–400 years old and
from the full range of natural forest density as an exam-
ple. For a given diameter, crown volume—crown volume
is the best predictor of leaf area and hence reflects growth

potential—for trees from 60 to 80 m height can vary
24-fold. After trees reach apex height (~200 years),
growth is preferentially allocated to the crown. Crown
mass increases as a percent of total mass from ~10 to 20%
depending on tree age and how many competitors are
nearby. Larger crowns also result in more wood alloca-
tion to the tree base than higher along the trunk
(Deleuze & Houllier, 2002; Sumida, Miyaura, & Torii,
2013). Therefore, biomass growth is overestimated by
equations relying on diameter increments to predict
large-crowned trees. Total mass given diameter is actually
slightly larger in more dense neighborhoods with small
crowns because trunks are more columnar (Kramer
et al., 2018). Additionally, branch wood is ~43 to 132%
denser than trunk wood (Kramer et al., 2018; Sillett et al.,
2018) and trunk wood density changes with height ~18%
(Sillett et al., 2018), so wood density needs to be inte-
grated into whole-tree estimates (Wassenberg, Chiu,
Guo, & Spiecker, 2015). Thus, detailed mapping of trunk
and crown dimensions improve predictions of biomass
growth in large trees (Sillett et al., 2020) as well as stand-
level consequences of climate-related silvicultural
treatments.

3 | PHYSIOLOGICAL
ACCLIMATION TO CHANGES IN
TEMPERATURE AND
PRECIPITATION

Particular tree species are able to persist in a wide variety
of climates because they maintain critical physiological

FIGURE 2 Data (green circles) and predictions (solid line) for total dry (a) and leaf mass (b) from Picea sitchensis up to ~500-cm

diameter plotted with predictions (colored lines) from allometric equations from Jenkins, Chojnacky, Heath, and Birdsey (2004), Chojnacky,

Heath, and Jenkins (2014), and Bormann (1990). Diameter is expressed as functional diameter at breast height (f-DBH, 1.37 m), which

accounts for air spaces of complex tree bases, see Kramer, Sillett, & Van Pelt, 2018. Light and dark gray boxes show range of diameters and

predictions reported in Jenkins (≤ 250 cm) and Bormann (≤ 78 cm), respectively. Jenkins leaf mass is calculated from product of the

predicted leaf ratio from an equation based on trees ≤ 78-cm diameter and total mass. Chojnacky et al. (2014) predicted leaf mass is the same

as Bormann (1990) model and not shown. Figure reprinted from Kramer et al. (2018) with permission from Elsevier [Color figure can be

viewed at wileyonlinelibrary.com]
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parameters within functional ranges. For example, water
content is kept above 0.6–0.75 to maintain leaf turgor
pressure (Azuma, Ishii, & Masaki, 2019; Williams,
Næsborg & Dawson, 2017). In essence, trees regulate pro-
cesses like photosynthesis and respiration, or account for
inefficiencies in one process by compensating with
another. Critical functions affecting the ability of trees to
compensate for changes in climatic variables include:
maintaining photosynthetic rates, positive carbon bal-
ance, hydraulic conductivity and reproduction.

Forests generally absorb more atmospheric CO2 via
photosynthesis than they release via respiration. How-
ever, a warming climate has the potential to make forests
weaker carbon sinks or even carbon sources (Dusenge,
Duarte, & Way, 2019; Luo, 2007). Upper canopies of for-
ests sequester a disproportionate amount of CO2, relative
to whole-forest leaf area (Doughty & Goulden, 2008;
Kumagai et al., 2006). The top of the canopy, however, is
generally more physiologically stressful, with hotter,
windier conditions and higher vapor pressure deficit
(e.g., Rey-Sánchez, Slot, Posada, & Kitajima, 2017). Net
photosynthesis rates increase with increasing tempera-
ture up to a peak, then decline, with the peak rate occur-
ring at the optimum temperature for photosynthesis
(Topt, Figure 3). Even though canopy leaves can be quite
plastic in response to changing vertical microclimate

(e.g., Coble, VanderWall, Mau, & Cavaleri, 2016), recent
work has shown that upper canopies in both tropical and
temperate forests are experiencing temperatures 3–5�C
higher than Topt (Doughty & Goulden, 2008; Mau, Reed,
Wood, & Cavaleri, 2018).

Acclimation to warming could be accomplished by
either upregulating photosynthesis or downregulating plant
respiration (Figure 3). Photosynthetic acclimation involves
increased rates of CO2 uptake at higher temperatures, either
through an upward shift of Topt (photosynthesis peaks at
higher optimum temperature) or by increasing photosyn-
thetic rates at the optimum temperature (Berry &
Bjorkman, 1980; Way & Yamori, 2014). Respiration accli-
mation, on the other hand, involves reduced rates of CO2

release at a given temperature, either through reduced sen-
sitivity to increasing temperature (i.e., less steep exponential
respiration-temperature response curve) or reduced basal
rates of respiration (i.e., lower y-intercept of the curve)
(Atkin & Tjoelker, 2003). Only a few studies examine physi-
ological responses to leaf-level experimental warming in
forest canopies, and they show mixed results. While respira-
tion acclimated (i.e., downregulated) in a tropical forest
canopy following several weeks of warming (Slot et al.,
2014), photosynthesis did not acclimate (i.e., upregulate) to
experimental warming in a temperate forest canopy, and in
fact, peak photosynthetic rates at Topt declined (Carter &
Cavaleri, 2018). While not specifically measuring acclima-
tion, Doughty (2011) also found decreases in net photosyn-
thetic rates after leaf-level warming in a tropical forest
canopy, presumably due to heat-induced biochemical
damage.

As a part of the tropical responses to altered climate
experiment in Puerto Rico (Kimball et al., 2018) the first
canopy warming experiment was initiated to measure both
photosynthetic and respiratory acclimation along the can-
opy height gradient (Figure 4, using methods described in
Carter & Cavaleri, 2018). After 1 month, leaf respiration
acclimated through a downregulation of temperature sensi-
tivity across the canopy height gradient, where respiration
rates did not increase as steeply with measurement temper-
ature in the experimentally warmed leaves compared to
control leaves (K. Carter, unpublished). Net photosynthesis
did not acclimate (i.e., upregulate with warming) at any
height, and the rate of photosynthetic electron transport
upregulated only in the understory. The lack of photosyn-
thetic acclimation of upper canopy leaves following canopy
warming suggests that the most productive portion of can-
opy trees are operating near their acclimation limit, and fur-
ther increases in temperature may push some tropical tree
species beyond their physiological optima, potentially
resulting in reduced overall forest carbon uptake.

Trees can also compensate for reduced photosynthesis
by distributing net carbon gain over whole seasons.

FIGURE 3 Responses of photosynthetic CO2 uptake (gray

lines) and respiratory CO2 release (black lines) to temperature. Topt

is optimal temperature for photosynthesis under normal conditions

(solid lines). The difference between uptake and release by

photosynthesis and respiration is net carbon gain. Photosynthetic

acclimation involves increased rate of CO2 uptake at higher

temperatures, either through a shift in Topt to higher temperature

(dashed line) or increasing maximum photosynthetic rate at higher

temperature (dotted line). Respiration acclimation involves reduced

rate of CO2 release at a given temperature, either through reduced

sensitivity to increasing temperature (dashed line) or reduced basal

rates of respiration (dotted line) [Color figure can be viewed at

wileyonlinelibrary.com]
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Because trees integrate photosynthesis and respiration
over time, measurements of responses over a few months
may not provide a complete picture of whole-plant or
whole-forest carbon balance. This is an especially impor-
tant consideration because, although photosynthesis may
upregulate in hotter temperatures, it does not increase
exponentially like respiration often does (Ryan, Linder,
Vose, & Hubbard, 1994). If photosynthesis adjusts to opti-
mize at a higher temperature, such acclimation could be
canceled by increasing respiration rates, and could lead
to less CO2 sequestration by forest canopies under global
warming. Respiration rates, however, can be highly vari-
able with season. Araki, Gyokusen, and Kajimoto (2017)
show that temperature acclimation of leaf respiration

could mitigate negative effects of higher temperatures on
canopy carbon exchange. They show that in a young
Chamaecyparis obtusa plantation, leaf respiration is less
sensitive to the short-term temperature change in sum-
mer than in winter, suggesting that leaf respiration can
acclimate to ambient (growth) temperatures. When
incorporated into predictions of monthly canopy respira-
tion, acclimation of leaf respiration contributed to
decreasing canopy respiration under future warming sce-
narios (Figure 5). Thus, incorporating temperature accli-
mation of leaf respiration into carbon cycle models could
reduce predictions of increased CO2 release from forests
in response to warming.

Many forests will also need to contend with drought
as the distribution of precipitation over space and time
changes (Allen et al., 2010). Two contrasting responses of
trees to drought include avoidance and tolerance
(McDowell et al., 2008). Drought avoidance involves sto-
matal control to maintain leaf water potential and con-
serve water at the cost of reduced CO2 uptake
(photosynthetic production), but could lead to carbon
starvation under prolonged drought. In contrast, drought
tolerance involves maintaining leaf gas exchange and
decreased water potential, risking loss of hydraulic con-
ductivity. The latter mechanism appears to dominate as
the leading cause of mortality under drought because, in
a study of 26 tree species, 100% of dead trees showed >
60% loss of conductivity, whereas only 62% had low car-
bohydrate reserves following drought (Adams et al., 2017;
Johnson et al., 2018). Therefore, mechanisms for accli-
mating to water stress will likely be reflected in traits that
increase a tree's ability to maintain leaf gas exchange.

As with carbon gain and temperature, leaf hydraulic
properties are maintained despite increasing water stress.
A throughfall exclusion experiment was conducted in a

FIGURE 5 Monthly estimates of canopy respiration with no temperature acclimation of leaf respiration rate (a, static Q10) and those

with temperature acclimation (b, variable Q10). Q10 is the change in respiration rate per 10�C change in temperature. Bars represent

empirical data for 2012 and two warming scenarios for 2070 (+2.0 and +3.9�C) [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 4 Examples of leaf heaters in the upper canopy of

Ocotea sintensii, part of the Tropical Responses to Altered Climate

Experiment (TRACE) in the Luquillo Experimental Forest in

Puerto Rico (photo credit M. Cavaleri) [Color figure can be viewed

at wileyonlinelibrary.com]
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40-year-old Cryptomeria japonica plantation to investi-
gate response of the most prominent plantation species
in Japan to drought (Y. Inoue, unpublished). Barriers
were built around the base of the trees to exclude
throughfall completely, reducing soil water potential to a
range of −0.1 to −0.5 MPa. Results from the first growing
season indicate no effect of drought on leaf water status,
stomatal sensitivity, or morphology, suggesting that this
species may be less sensitive to drought, at least in the
short term. Long-term effects of drought on hydraulic
acclimation of C. japonica are still being tested, and
results could have important implications for the future
of Japanese plantation forests.

Responses to drought may also vary with tree age.
Azuma et al. (2019) compared mature (~100 years) and
old trees (~300 years) of Pinus densiflora with similar
height, growing next to each other in a natural experiment
to test effects of tree age on leaves' ability to maintain
homeostasis along the hydrostatic gradient associated
with tree height. Leaves of mature trees have higher
capacitance but less resistance to lower water potential
than old trees. These traits, in combination with large
amounts of water that can release from leaves prior to tur-
gor loss (Azuma et al., 2019; Williams et al., 2017), may
mean younger trees can compensate for water stress in
the short term. In contrast, we might expect old trees to
be more vulnerable to loss of hydraulic conductivity
because of their lower capacitance and elasticity (Azuma
et al., 2019). Older trees also have more energetic
demands due to increased defense against higher patho-
gen loads (e.g., Shigo, 1984; Taylor, Gartner, & Morrell,
2002). Lower nitrogen (N) content in upper crown leaves
and reduced photosynthesis of old P. densiflora (Azuma
et al., 2019) may be because of the N needed by adenosine
tri-phosphate to form energy-rich defensive compounds. If
old trees are more carbon limited, they would adopt a
drought-tolerant rather than drought-avoidant strategy to
conserve carbohydrates. For older P. densiflora trees with
higher leaf mass to area ratio (LMA), less photosynthetic
mesophyll and lower N, there may be a tradeoff between
anatomical acclimation to water stress, photosynthesis
and energetic demand. Testing this hypothesis would
necessitate integration across whole trees.

4 | PREDICTING ACCLIMATION
POTENTIAL OF INDIVIDUALS AND
ITS EFFECTS ON SPECIES
PERSISTENCE

Because most studies only last a few years, limited data
exist to quantify acclimation responses of trees over long
periods, suggesting the need for surrogate indices of

acclimation potential. The acclimation potential of indi-
vidual organisms depends on their phenotypic plasticity
and the ability of a given genotype to express different
phenotypes in response to variable environmental condi-
tions (Schlichting, 1986; Sultan, 1987). Phenotypic plas-
ticity is especially important for sessile organisms like
trees to cope with environmental perturbation and
changes in growing condition during their long lives
(Nicotra et al., 2010; Valladares, Gianoli, & Gómez,
2007). Thus, phenotypic plasticity will likely be a key
mechanism for acclimation of trees to climate change
(Chambel, Climent, Alia, & Fernando, 2005;
Grulke, 2010).

Trait variation present in populations represents com-
bined effects of physiological acclimation, phenotypic
plasticity and genotypic variation in response to environ-
mental conditions (Kreyling et al., 2014; Stojnic et al.,
2015). Because individual trees must survive long-term
climatic shifts, they have evolved to retain high pheno-
typic plasticity (Duptie, Rutschmann, Ronce, & Chuine,
2015; Petit & Hampe, 2006). In trees, phenotypic plastic-
ity can be observed as trait variation within individuals,
for example, by morphological or physiological variation
from sun to shade leaves within a crown. Intraindividual
trait variation represents phenotypic plasticity and the
acclimation potential of individuals to gradients in envi-
ronmental conditions, thus gives insight to the breadth of
environmental conditions individuals can endure and
could be used as a surrogate measure of acclimation
potential to future climate change.

Ishii, Horikawa, Noguchi, and Azuma (2018) show
that intra-canopy leaf trait variation varies among
regional populations of Fagus crenata, suggesting that
individual-level phenotypic plasticity may also vary
(Figure 6). Populations near the northern and altitudinal
distribution limits, where F. crenata is expanding its dis-
tribution range, had high intra-canopy trait variation,
whereas trait variation was low for southern populations.
F. crenata populations in southwestern Japan are isolated
at high elevations, thus their low trait variability may
imply low acclimation potential of individuals to climate
change. Current models predicting future distribution of
tree species do not take into account physiological accli-
mation (Smith & Dukes, 2013). If individual trees are
able to acclimate, they could survive longer than
predicted, while those that do not acclimate may disap-
pear sooner.

Persistence of local populations also depends on
reproductive output of individual trees. Reproduction
dynamics are affected by climate change, and, through its
effects on seed production, germination and seedling sur-
vival/growth, could lead to population and community
structure shifts (Figure 7). Producing large quantities of
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flowers and seeds consumes substantial photosynthate
(Ichie et al., 2013; Y. Miyazaki, Hiura, Kato, & Funada,
2002) and mineral nutrients (Han, Kabeya, & Inagaki,
2017; Sala, Hopping, McIntire, Delzon, & Crone, 2012).
In particular, physiological mechanisms of intermittent
and synchronous reproduction by perennial plants, called

masting (Kelly, 1994), are responsive to temperature as
well as resource availability (Bogdziewicz et al., 2020).
Some synchronizing climatic reproduction cues, such as
temperature and precipitation, may be mediated via
changes in soil nutrient availability (Smaill, Clinton,
Allen, & Davis, 2011). For example, in a masting species
F. crenata flowering is induced in response to nitrogen
levels in current-year shoots (Miyazaki et al., 2014). Prior
studies suggest masting intensity will change in response
to climate change (Monks, Monks, & Tanentzap, 2016),
while masting will be unaffected by increasing mean
temperatures (Kelly et al., 2013). This uncertainty may
arise from different masting mechanisms among taxa.
More studies designed to test physiological hypotheses of
masting are needed to better predict direct and indirect
effects of changing climate on plant reproductive patterns
and global vegetation dynamics (Bogdziewicz et al.,
2020).

In a population of F. crenata from a cool-temperate
forest in western Japan (Akaji, Miyazaki, Hirobe,
Makimoto, & Sakamoto, 2016; Ariya et al., 2016), masting
intensity of mature trees affects demography via seed
availability and seedling survival with time lags of up to
5 years (Y. Miyazaki, unpublished). Here, reproduction
had occurred every other year for more than 14 years.
Biennial seed production negatively affected shoot elon-
gation in the canopy but not annual ring growth. The
amount of viable seeds produced in a single reproductive
event was small (0–64 sound seeds per m/year, mean
value of 15 seed traps in a 0.5-ha plot), but mortality of
seedlings during the first growing season was very low
(27.6%: during the first year after germination), although
it is generally higher for F. crenata in other forests
(ca. 80%, Akashi, 1997; Masaki, Osumi, Takahashi, &
Hozshizaki, 2005). As a result, masting was reflected in
the age structure of the seedling population for up to
5 years. This study suggested that, if climate change
affects the periodicity and intensity of reproductive out-
put of a masting species, it may have long-term effects on
the population dynamics and species persistence with
several years' time lag, which must be accounted for in
future demographic study designs.

5 | CONCLUSIONS AND
SYNTHESIS

Mysteries of how climate will change in the future are
still unveiling themselves, and responses of forests to this
change are even less certain. In this review, we explore
ways forest canopy research can provide insights for
answering questions such as how climate change will
affect productivity of forest ecosystems and whether

FIGURE 6 Leaf trait variation among Fagus crenata

populations in Japan. Three-letter-acronyms stand for different

regional populations including the northern distribution limit,

Soibetsu Forest (SOI, 42�410N), in Hokkaido Pref., altitudinal limits

Sugadaira Field Station (SUG, 1315 m asl) and Nishikoma Research

Forest (NIS, 1600 m asl) in Nagano Pref. and near the southern

limit, Shiiba Research Forest (MIY, 32�130N) in Miyazaki Pref.

Other sites are: Shirakami Mts. (SHI, Aomori Pref.), Kawatabi Field

Station (KAW, Miyagi Pref.), Tohoku Univ. Botanical Garden in

Sendai (SEN, Miyagi Pref.), Ogawa Forest Reserve (OGA, Ibaraki

Pref.), Naeba Mts. (NAE, Niigata Pref.), Wakasugi Forest Reserve

(WAK, Okayama Pref.), Mt. Rokko (ROK, Hyogo Pref.),

Mt. Takanosu (TAK, Hiroshima Pref.) and Komenono Research

Forest (EHI, Ehime Pref.). Figure reprinted form Ishii et al. (2018)

with permission from Elsevier [Color figure can be viewed at

wileyonlinelibrary.com]

FIGURE 7 Climate-related changes in temperature, rainfall

and nitrogen deposition can affect tree seed production,

germination and seedling survival/growth. Ultimately affecting

population and community structure of forests [Color figure can be

viewed at wileyonlinelibrary.com]
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species will be able to persist without migrating. During
the 66th annual Ecological Society of Japan symposium
“Structure and Function of Forest Canopies under Cli-
mate Change,” topics explored how biomass, growth,
metabolism, hydraulic function, reproduction and trait
variation are expressed in trees under different condi-
tions. In general, effects of increased temperature and
drought were either compensated for or dampened when
expressed in tree processes and traits, a scenario that sug-
gests a lagged response to changing climate. A portion of
this compensation is due to the amount of trait variability
in species. How do we integrate what we have learned
from these findings into a consistent strategy for deter-
mining how forests will respond to climate change?
Below we outline a two-step approach that recognizes
limitations of physiological studies by first limiting inves-
tigative scope, and second, posits that integrating whole-
tree structure data with measurements of trait and physi-
ological variability will allow us to predict more accu-
rately how trees will respond.

Uncertainty is very high for how climatic stressors
will affect tree survival; therefore, we first need to focus
investigations to a limited set of tree species to reduce
confounding variables. Despite assumptions that species
must migrate poleward or up in elevation to avoid rising
temperatures (e.g., Iverson & McKenzie, 2013), many
move counterintuitively or not at all due to unforeseen or
indirect effects of climate interactions (Zhu, Woodall, &
Clark, 2012). For example, shade-intolerant Pinus
heldreichii, is moving down in elevation as well as up,
likely because stressed Fagus sylvatica forests along the
low-elevation boundary are less competitive (Piovesan,
2019; Piovesan, Biondi, Di Filipo, & Maugeri, 2008). In
such cases, ranges are constrained by factors other than
climate. Climate envelopes based on species' ranges con-
tain incomplete information about where trees can sur-
vive and no information about where they cannot, thus
represent realized rather than actual niches. In reality,
tree range is limited by factors such as seasonality (Bolte
et al., 2010), competition (Meier et al., 2012) and distur-
bance regime (Johnstone et al., 2016; Serra-Diaz,
Scheller, Syphard, & Franklin, 2015) at least as much as
they are by mean temperature and rainfall. Many species
are therefore adapted to a wider range of climate than
where we currently find them. If what limits their range
is not obvious or involves nonstationary complex pro-
cesses, predicting their future ranges centuries or even
decades ahead will not be successful.

Projections of the global distribution of forest ecosys-
tems and their rates of carbon sequestration are made
using correlational bio-climate envelope models (see Dis-
cussion by Hampe & Petit, 2005). These models tend to
overestimate species losses and productivity decline

because key biological aspects such as physiological accli-
mation and phenotypic plasticity and are not considered
(Thuiller et al., 2008). Models also do not consider species
interactions affecting community dynamics, such as trait-
mediated interactions arising from trait plasticity
(Callaway, Pennings, & Richards, 2003; Werner &
Peacor, 2003). Thus, quantification of physiological accli-
mation and phenotypic plasticity can improve prediction
of species responses to climate change and of future for-
est distribution.

For the second step of our approach, we suggest
whole-tree integration of physiological and morphologi-
cal characteristics. Trees integrate processes throughout
their crowns as well as over time, therefore isolated mea-
surements will miss emergent properties of whole trees.
An example of this from the structural analysis above is
that basal increment growth of a large tree can over- or
underestimate whole-tree growth because it ignores the
crown. Similarly, measurements during one season or in
one location ignore the ability of trees to concentrate or
distribute photosynthetic gain across seasons or in vari-
ous parts of the crown as the sun changes position.
Because trees are large and long-lived, accurately docu-
menting and integrating spatial/temporal variation is
important for understanding their physiological function.
For example, tissue-based respiration is a function of tis-
sue volume including cambium, sapwood and heart-
wood, which all increase with size (West, 2020).
Integrating chamber-style measurements of physiology
with whole-tree structure and function could explain
apparently paradoxical observations. One seeming para-
dox is that upper leaves in the tallest angiosperm (Euca-
lyptus regnans) are more costly to make and less efficient
because they have higher LMA (England & Attiwill,
2006) and lower stomatal conductance (Koch, Sillett,
Antoine, & Williams, 2015), however most wood is pro-
duced by leaves in the upper crown even though these
leaves are more hydraulically stressed. At the whole-tree
level, it is apparently more beneficial to have more ineffi-
cient leaves in full sun than fewer efficient ones in partial
shade.

Scaling from individual trees to forest ecosystems rep-
resents an even greater challenge than from isolated mea-
surements to whole trees. Ecologists must meet this
challenge because forest ecosystems represent approxi-
mately half of total global terrestrial carbon sequestration
(Beer et al., 2010), and thus, are highly influential to the
carbon cycle. We must gain a better understanding of the
effects of climate change on forest canopy physiology,
including responses to warmer temperatures and more
variable rainfall, using both observations of natural varia-
tion and long-term manipulative experiments. Large-
scale experimental manipulations and long term
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monitoring are essential for demonstrating forest-climate
responses, yet such monitoring is the first to lose funding
when budgets contract. If forest ecologists and physiolo-
gists are able to coalesce around a few long-term experi-
ments such as TRACE, then we are more likely to
discover consistent forest responses to climate change.
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