291 research outputs found

    Stable lepton mass matrices

    Get PDF
    Abstract: We study natural lepton mass matrices, obtained assuming the stability of physical flavour observables with respect to the variations of individual matrix elements. We identify all four possible stable neutrino textures from algebraic conditions on their entries. Two of them turn out to be uniquely associated to specific neutrino mass patterns. We then concentrate on the semi-degenerate pattern, corresponding to an overall neutrino mass scale within the reach of future experiments. In this context we show that i) the neutrino and charged lepton mixings and mass matrices are largely constrained by the requirement of stability, ii) naturalness considerations give a mild preference for the Majorana phase most relevant for neutrinoless double-\u3b2 decay, \u3b1 3c \u3c0/2, and iii) SU(5) unification allows to extend the implications of stability to the down quark sector. The above considerations would benefit from an experimental determination of the PMNS ratio 1aU32/U31 1a, i.e. of the Dirac phase \u3b4. \ua9 2016, The Author(s)

    On the effect of resonances in composite Higgs phenomenology

    Full text link
    We consider a generic composite Higgs model based on the coset SO(5)/SO(4) and study its phenomenology beyond the leading low-energy effective lagrangian approximation. Our basic goal is to introduce in a controllable and simple way the lowest-lying, possibly narrow, resonances that may exist is such models. We do so by proposing a criterion that we call partial UV completion. We characterize the simplest cases, corresponding respectively to a scalar in either singlet or tensor representation of SO(4) and to vectors in the adjoint of SO(4). We study the impact of these resonances on the signals associated to high-energy vector boson scattering, pointing out for each resonance the characteristic patterns of depletion and enhancement with respect to the leading-order chiral lagrangian. En route we derive the O(p^4) general chiral lagrangian and discuss its peculiar accidental and approximate symmetries.Comment: v3: a few typos corrected. Conclusions unchange

    Anomalous Couplings in Double Higgs Production

    Full text link
    The process of gluon-initiated double Higgs production is sensitive to non-linear interactions of the Higgs boson. In the context of the Standard Model, studies of this process focused on the extraction of the Higgs trilinear coupling. In a general parametrization of New Physics effects, however, an even more interesting interaction that can be tested through this channel is the (ttbar hh) coupling. This interaction vanishes in the Standard Model and is a genuine signature of theories in which the Higgs boson emerges from a strongly-interacting sector. In this paper we perform a model-independent estimate of the LHC potential to detect anomalous Higgs couplings in gluon-fusion double Higgs production. We find that while the sensitivity to the trilinear is poor, the perspectives of measuring the new (ttbar hh) coupling are rather promising.Comment: 22 pages, 9 figures. v2: plots of Figs.8 and 9 redone to include experimental uncertainty on the Higgs couplings, references adde

    Higgs Low-Energy Theorem (and its corrections) in Composite Models

    Get PDF
    The Higgs low-energy theorem gives a simple and elegant way to estimate the couplings of the Higgs boson to massless gluons and photons induced by loops of heavy particles. We extend this theorem to take into account possible nonlinear Higgs interactions resulting from a strong dynamics at the origin of the breaking of the electroweak symmetry. We show that, while it approximates with an accuracy of order a few percents single Higgs production, it receives corrections of order 50% for double Higgs production. A full one-loop computation of the gg->hh cross section is explicitly performed in MCHM5, the minimal composite Higgs model based on the SO(5)/SO(4) coset with the Standard Model fermions embedded into the fundamental representation of SO(5). In particular we take into account the contributions of all fermionic resonances, which give sizeable (negative) corrections to the result obtained considering only the Higgs nonlinearities. Constraints from electroweak precision and flavor data on the top partners are analyzed in detail, as well as direct searches at the LHC for these new fermions called to play a crucial role in the electroweak symmetry breaking dynamics.Comment: 30 pages + appendices and references, 12 figures. v2: discussion of flavor constraints improved; references added; electroweak fit updated, results unchanged. Matches published versio

    Large theta_13 from a model with broken L_e-L_mu-L_tau symmetry

    Full text link
    Recent data in the neutrino sector point towards a relatively large value of the reactor angle, incompatible with a vanishing theta_ 13 at about 3 sigma. In order to explain such a result, we propose a SUSY model based on the broken L_e-L_mu-L_tau symmetry, where large deviations from the symmetric limit theta_12 = pi/4, tan(theta_23) \sim O(1) and theta_13 = 0 mainly come from the charged lepton sector. We show that a description of all neutrino data is possible if the charged lepton mass matrix has a special pattern of complex matrix elements.Comment: 9 pages, 2 figures. v2: comments and references added, as published in JHE

    Global Analysis of the Higgs Candidate with Mass ~ 125 GeV

    Get PDF
    We analyze the properties of the Higgs candidate with mass ~ 125 GeV discovered by the CMS and ATLAS Collaborations, constraining the possible deviations of its couplings from those of a Standard Model Higgs boson. The CMS, ATLAS and Tevatron data are compatible with Standard Model couplings to massive gauge bosons and fermions, and disfavour several types of composite Higgs models unless their couplings resemble those in the Standard Model. We show that the couplings of the Higgs candidate are consistent with a linear dependence on particle masses, scaled by the electroweak scale ~ 246 GeV, the power law and the mass scale both having uncertainties ~ 20%.Comment: 22 pages, 9 figures, v2 incorporates experimental data released during July 2012 and corrected (and improved) treatment of mass dependence of coupling

    Renormalisation group corrections to neutrino mixing sum rules

    Get PDF
    Neutrino mixing sum rules are common to a large class of models based on the (discrete) symmetry approach to lepton flavour. In this approach the neutrino mixing matrix UU is assumed to have an underlying approximate symmetry form \tildeU_\nu, which is dictated by, or associated with, the employed (discrete) symmetry. In such a setup the cosine of the Dirac CP-violating phase ÎŽ\delta can be related to the three neutrino mixing angles in terms of a sum rule which depends on the symmetry form of \tildeU_\nu. We consider five extensively discussed possible symmetry forms of \tildeU_\nu: i) bimaximal (BM) and ii) tri-bimaximal (TBM) forms, the forms corresponding to iii) golden ratio type A (GRA) mixing, iv) golden ratio type B (GRB) mixing, and v) hexagonal (HG) mixing. For each of these forms we investigate the renormalisation group corrections to the sum rule predictions for ÎŽ\delta in the cases of neutrino Majorana mass term generated by the Weinberg (dimension 5) operator added to i) the Standard Model, and ii) the minimal SUSY extension of the Standard Model

    Supersymmetry with a pNGB Higgs and partial compositeness

    Get PDF
    We study the consequences of combining SUSY with a pseudo Nambu-Goldstone boson Higgs coming from an SO(5)/SO(4) coset and "partial compositeness". In particular, we focus on how electroweak symmetry breaking and the Higgs mass are reproduced in models where the symmetry SO(5) is linearly realized. The global symmetry forbids tree-level contributions to the Higgs potential coming from D-terms, differently from what happens in most of the SUSY little-Higgs constructions. While the stops are generally heavy, light fermion top partners below 1TeV are predicted. In contrast to what happens in non-SUSY composite Higgs models, they are necessary to reproduce the correct top, rather than Higgs, mass. En passant, we point out that, independently of SUSY, models where tR is fully composite and embedded in the 5 of SO(5) generally predict a too light Higgs. Open Access, \ua9 2014 The Authors

    Post-LS3 Experimental Options in ECN3

    Full text link
    The Experimental Cavern North 3 (ECN3) is an underground experimental cavern on the CERN Pr\'evessin site. ECN3 currently hosts the NA62 experiment, with a physics programme devoted to rare kaon decays and searches of hidden particles approved until Long Shutdown 3 (LS3). Several options are proposed on the longer term in order to make best use of the worldwide unique potential of the high-intensity/high-energy proton beam extracted from the Super Proton Synchrotron (SPS) in ECN3. The current status of their study by the CERN Physics Beyond Colliders (PBC) Study Group is presented, including considerations on beam requirements and upgrades, detector R&D and construction, schedules and cost, as well as physics potential within the CERN and worldwide landscape.Comment: 113 pages, 39 figure

    Exploring holographic Composite Higgs models

    Get PDF
    Simple Composite Higgs models predict new vector-like fermions not too far from the electroweak scale, yet LHC limits are now sensitive to the TeV scale. Motivated by this tension, we explore the holographic dual of the minimal model, MCHM5, to try and alleviate this tension without increasing the fine-tuning in the Higgs potential. Interestingly, we find that lowering the UV cutoff in the 5D picture allows for heavier top partners and less fine-tuning. In the 4D dual this corresponds to increasing the number of “colours” N , thus increasing the decay constant of the Goldstone Higgs. This is essentially a ‘Little Randall-Sundrum Model’, which are known to reduce some flavour and electroweak constraints. Furthermore, in anticipation of the ongoing efforts at the LHC to put bounds on the top Yukawa, we demonstrate that deviations from the SM can be suppressed or enhanced with respect to what is expected from mere symmetry arguments in 4D. We conclude that the 5D holographic realisation of the MCHM5 with a small UV cutoff is not in tension with the current experimental data
    • 

    corecore