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1 Introduction

The discovery of the Higgs boson at the LHC [1, 2] and, at the same time, the absence

of the discovery of new particles, is becoming a challenge for natural theories, aiming to

solve the gauge hierarchy problem. This tension applies in particular to supersymmetric

(SUSY) models, where the natural scale of new physics beyond the Standard Model (SM)

is predicted around the weak scale. The ever-increasing bounds on sparticle masses are

confining SUSY theories in the per cent or lower region of fine-tuning.

An alternative possible solution to the gauge hierarchy problem is to assume that the

Higgs field is a pseudo Nambu-Goldstone Boson (pNGB) of a spontaneously broken global

symmetry. Since in absence of SUSY scalar masses are unnatural, the obvious framework

of this idea is in the context of strongly coupled field theories, where the pNGB Higgs is a

bound state of some more fundamental constituents [3, 4], like pions in QCD. In contrast

to SUSY, in this scenario new particles can naturally appear at a scale significantly higher

than the weak one. Since the real Higgs is not a NGB, one has to properly add explicit

symmetry breaking terms to give it a mass, without reintroducing the hierarchy problem.

Moreover, electroweak precision data indicate that the Higgs compositeness scale f has to

be somewhat higher than the electroweak scale v.
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Roughly speaking, the model building with a pNGB Higgs in the last years can be

grouped in two different classes. On one hand, we have little Higgs models [5, 6] where,

thanks to an ingenious symmetry breaking mechanism (collective breaking) the mild hi-

erarchy between v and f can naturally be realized. On the other hand, one can give up

a dynamical explanation for this splitting and rely on tuning. Since the explicit working

implementations of the little Higgs idea result in cumbersome models, while the tuning to

accept in the second case is not very high, we focus in this paper on this second possibility.

In the latter models, denoted in what follows as Composite Higgs Models (CHM), the Higgs

potential is typically assumed to be entirely generated at the loop level.

The recent progress (mostly based on holographic 5D models [7]) revealed that the

most successful CHM are those where the SM vectors and fermions are partially composite

due to mass mixing with states of the strongly coupled sector [8, 9]. Due to these mixing,

SM vectors and fermions become partially composite; the lighter the states, the weaker the

mixing. Recent studies of CHM with a pNGB Higgs and partial compositeness, where the

Higgs potential is calculable, revealed that generically the Higgs is predicted to be heavier

than 126 GeV, unless some fermion resonances are anomalously light [10–13]. In particular,

parametrizations of the strongly coupled sector in terms of a single scale (f) and a single

coupling constant (gρ) [14] might need to be extended.

The aim of this paper is to combine SUSY and CHM with partial compositeness. Our

main motivation is explaining the Higgs mass in a theoretically well-defined and controlled

set-up. As well-known, standard minimal SUSY models predict a lighter than 126 GeV

Higgs while, as we have just reminded, CHM tend to give a heavier than 126 GeV Higgs

(unless light fermion resonances are assumed). It is thus natural to ask what would happen

if both scenarios were combined. A more theoretical, but equally important, motivation

to pursue this analysis is based on the difficulty to construct a purely non-SUSY UV

completion of CHM, in particular it is challenging to explain the partial compositeness

paradigm.1 On the contrary, SUSY is of great help in trying to address this question

and recently some partial UV completions of SUSY CHM have been found [16]. Since

SUSY allows to have technically light scalars, we actually consider models where the Higgs

appears as a pNGB of a spontaneously broken, linearly realized, SO(5) global symmetry.

A double protection mechanism is at work to suppress the UV sensitivity of the Higgs

mass parameter (SUSY and shift symmetry) [17–19]. In contrast to what happens in more

standard models such as the Minimal Supersymmetric Standard Model (MSSM), where

the Higgs Vacuum Expectation Value (VEV) is quadratically sensitive to soft mass term

parameters, the pNGB Higgs VEV at one-loop level is quadratically sensitive to the wino

and bino masses only, and SM superpartners can be decoupled without fine-tuning issues.

We do not specify the whole mechanism of SUSY breaking and parametrize it by soft mass

terms in both the elementary and the composite sectors.

The linear models we consider can be seen as the weakly coupled description of some

IR phase of a strongly coupled gauge theory, where the Higgs is a composite particle and

new vector resonances are expected, or as UV completions on their own, where the Higgs

1See ref. [15] for a recent attempt.
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is elementary up to high scales and no compositeness occurs. In the former case, we

might assume that the theory becomes strongly coupled at relatively low scales, such as

Λ = 4πf and determine the low energy values of the non-SM gauge and Yukawa couplings

by demanding that they all become strong at the scale Λ. In the latter case, the absence

of new vector resonances allows to extend the validity of the theory to higher scales, up

to around 100f , above which certain Yukawa couplings reach a Landau pole.2 We analyze

two models, representatives of these two possible interpretations.

The top quark, key player of ElectroWeak Symmetry Breaking (EWSB), is assumed to

be elementary to start with. We do not consider here models where the top quark (typically

its right-handed component tR) comes directly from the composite sector, since the simplest

constructions with composite fields in the fundamental representation of SO(5) predict a

too light Higgs. As we will briefly show, the reason is independent of SUSY and applies

quite generally (in the assumption, of course, of the absence of other large SO(5) violating

parameters not related to the top sector). In contrast to non-SUSY CHM, light fermion

top partners are in principle no longer needed to reproduce the correct Higgs mass, because

SUSY gives us a new handle. Two notable mass scales govern the Higgs potential: f and the

SUSY breaking soft masses m̃. For m̃� f , the models can be seen as a linear completion of

the non-SUSY CHM, and the Higgs is expected to be too heavy unless light top partners

are present. On the other hand, for m̃ � f , SUSY is too effective in suppressing the

radiatively induced Higgs potential and we get a too light Higgs, independently of the

overall mass scale of the exotic particles. However, light fermion top partners are still

predicted. In contrast to what happens in non-SUSY models, they are not linked to the

Higgs mass, but rather to the top mass itself3 and to the assumption of perturbativity at

least up to the scale Λ ∼ 4πf . In both models, the mass mixing between the top and the

fermion resonances is such that the correct top mass is reproduced only if some fermion

resonance is around the scale f . This in particular applies also in the “strongly coupled”

model because of a sort of see-saw mechanism among the fermion resonances that produces

a light mass eigenvalue. Stops can instead be quite heavy, well above the TeV scale. In

both models the fine-tuning is around the per cent level or better. Interestingly enough,

the request of having perturbativity up to Λ, EWSB, correct top and Higgs masses and

top partners with electric charge 5/3 above the recent bound found by CMS [21] almost

fix the parameter space of our models.

There are two main differences between our SUSY CHM and the SUSY little Higgs

models considered in the past (see e.g. refs. [17, 22–25] for a partial list of references):

i) we accept the mild hierarchy between v and f and4 ii) we consider global symmetries

associated to orthogonal (SO(5)), rather than unitary, groups.5 Orthogonal groups allow

2For simplicity of notation and with some abuse of language, we denote by “elementary” the SM fermions

and gauge fields and “composite” the fields coming from the new exotic sector, where the spontaneous

breaking of a symmetry produces the pNGB Higgs, independently of the actual interpretation of the models.

The terms “elementary sector”, “composite sector” and “partial compositeness” will also be used.
3A similar situation occurs in the holographic CHM of ref. [20].
4See ref. [26] where a similar approach has recently been advocated in a revival of the SUSY twin Higgs

idea [27–29].
5See ref. [30] for a SUSY model with a pNGB Higgs based on SO(5).
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Figure 1. Schematic representation of the structure of our models.

to consider scenarios where there is no D-term tree-level contribution to the whole Higgs

potential. This leads to some simplification in the model building.

Linear realizations of CHM with partial compositeness are a useful laboratory where

some UV-sensitive observables can be studied in a controlled set-up. In addition to the

prominent example of the Higgs potential itself, one might study for instance the occurrence

of the possible large and UV-dependent corrections to the S-parameter and Zbb̄ coupling,

recently pointed out in ref. [31]. As an example of this use, we study how unitarity in WW

scattering is recovered in our linear models and match the results with the more bottom-up

approach of ref. [32].

The structure of the paper is as follows. In section 2 we discuss the general set-up

underlying our models and describe the features of the Higgs potential. In sections 3 and 4

two concrete models, without and with vector resonances, respectively, are introduced. We

conclude in section 5. In appendix A we give some technical details on the parametrization

of the Higgs potential, while in appendix B we report our results for the unitarization of

WW scattering.

2 General set-up

Our models consist of an elementary sector, containing SM fermions, gauge bosons and their

supersymmetric partners, coupled to a composite sector where both the global symmetry G

and SUSY are spontaneously broken. On top of this structure, in order to have sizable SM

soft mass terms, we need to assume the existence of a further sector which is responsible

for an additional source of SUSY breaking and its mediation to the other two sectors. We

do not specify it and we parametrize its effects by adding soft terms in both the elementary

and the composite sectors. Our key assumption is that the soft masses in the composite

sector are G invariant. See figure 1 for a schematic representation. The main sources of

explicit breaking of G are the couplings between the elementary and the composite sectors,

namely the SM gauge couplings and the top mass mixing terms. We assume that partial

compositeness in the matter sector is realized through a superpotential portal of the form

W ⊃ ε ξSMNcomp . (2.1)
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In eq. (2.1) Ncomp are chiral fields in the composite sector and ξSM denote the SM matter

chiral fields. No Higgs chiral fields are present in the elementary sector, since the Higgs

arises from the composite sector. The term (2.1) is the only superpotential term involving

SM matter fields. For concreteness, we consider in this paper only the minimal custodially

invariant SO(5) → SO(4) symmetry breaking pattern with Ncomp in the fundamental

representation of SO(5). Like in non-SUSY CHM, the SM Yukawa couplings arise from

the more fundamental proto-Yukawa couplings of the form (2.1).6 We do not consider

SM fermions but the top in this paper, since they are not expected to play an important

role in the EWSB mechanism. They can get a mass via partial compositeness through

the portal (2.1), like the top quark, or by irrelevant deformations, for instance by adding

quartic superpotential terms.

As mentioned in the introduction, the SUSY models we consider can be seen as the

weakly coupled description of some IR phase of a strongly coupled theory, in which case

the Higgs is really composite, or alternatively one can take them as linear UV completions,

in which case no compositeness occurs. Depending on the different point of view, general

considerations can be made. If we want to take our models as UV completions on their own,

we might want to extend the range of validity of the theory up to high scales, ideally up to

the GUT or Planck scale. In this setting, introducing gauge fields in addition to the SM

gauge fields is disfavoured, because the multiplicity of the involved fields would typically

imply that the associated gauge couplings are not UV free and develop a Landau pole at

relatively low energies. Avoiding analogous Landau poles for certain Yukawa couplings

in the superpotential implies that the “composite sector” should be as weakly coupled as

possible. However, reproducing the correct top mass forces some coupling to be sizable; in

our explicit example a Landau pole is reached at a scale around 102f . Viceversa, additional

gauge fields are generally required if we assume that the linear models considered are an

effective IR description of a more fundamental strongly coupled theory, like in ref. [16].

We might now assume that the theory becomes strongly coupled at relatively low scales,

such as Λ = 4πf . We can actually determine the low energy non-SM Yukawa and gauge

couplings by demanding that they all become strong around the same scale Λ. As we will

see, light fermion top partners still appear in both cases.

In light of these two different perspectives, we will consider in the next sections two

benchmark models, with and without vector resonances.

2.1 Features of the Higgs potential

When the Higgs is a pNGB associated to an approximate spontaneous symmetry breaking,

its VEV is effectively an angle. For this reason it is often convenient to describe its potential

not in terms of the Higgs field h itself,7 but of its sine:

sh ≡ sin
h

f
, (2.2)

6In the field basis where we remove non-derivative interactions of the pNGB Higgs from the composite

sector, the Higgs appears in eq. (2.1).
7In order to simplify our notation considerably, we work throughout the paper in the unitary gauge and

denote by h the Higgs field in this gauge.
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where f is the Higgs decay constant. Following a standard notation we also define

ξ ≡ 〈s2
h〉 . (2.3)

The electroweak scale is fixed to be v2 = f2ξ ' (246 GeV)2. We focus on small values of ξ

and in explicit results we set it to the benchmark value ξ = 0.1. Due to the contribution of

particles whose masses vanish for sh = 0 (such as the top, W and Z), the one-loop Higgs

potential contains non-analytic terms of the form s4
h log sh that do not admit a Taylor

expansion around sh = 0. In the phenomenological regions of interest, these terms do not

lead to new features and are qualitatively but not quantitatively negligible. However, they

make an analytic study of the potential slightly more difficult. For this reason, we neglect

them altogether in what follows and refer to the appendix A for a more refined analysis

of the Higgs potential where they are included. For sh � 1, the tree-level + one-loop

potential V = V (0) + V (1) admits an expansion of the form

V = −γs2
h + βs4

h +O(s6
h) . (2.4)

The non trivial minimum of the potential is found at

ξ =
γ

2β
, (2.5)

and the Higgs mass square is given by

M2
H =

8β

f2
ξ(1− ξ) . (2.6)

In all the models we will consider, there are two distinct sectors that do not couple at

tree-level at quadratic order: a “matter” sector, including the fields that mix with the

top quark and a “gauge” sector, including the SM gauge fields and other fields, neutral

under color. The matter and gauge sectors contribute separately to the one-loop Higgs

potential (2.4):

γ = γgauge + γmatter ,

β = βgauge + βmatter .
(2.7)

The explicit SO(5) symmetry breaking parameters are the SM gauge couplings g and g′

in the gauge sector and the mixing parameter ε given by eq. (2.1) in the matter sector.

Since the latter is sizably larger than the former, for sensible values of the parameters

βmatter � βgauge.
8 At fixed ξ, then, the Higgs mass is essentially determined by the matter

contribution (in the numerical study, however, we keep all the contributions to the one-loop

potential). The gauge contribution should instead be retained in γ, because the fine-tuning

cancellations needed to get ξ � 1, might involve γgauge.

8A numerical analysis confirms this result and shows that typically βgauge is at least one order of mag-

nitude smaller than βmatter.
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2.2 Non-SUSY Higgs mass estimates

Before analyzing the Higgs potential in SUSY CHM, it might be useful to quickly review

the situation in the purely non-SUSY bottom-up constructions. We focus in what follows

on models where the composite fields are in the fundamental representation of SO(5).

Higher representations lead to a multitude of other fields, they are more complicated to

embed in a UV model and worsen the problem of Landau poles. Moreover they might

lead to dangerous tree-level Higgs mediated flavor changing neutral currents [33]. It should

however be emphasized that they can be useful and can result in qualitatively different

results, see e.g. ref. [34] for a recent discussion of the Higgs mass estimate for CHM with

composite fermions in the 14 of SO(5). Generically, the Higgs mass is not calculable in

CHM, since both γ and β defined in eq. (2.4) are divergent and require a counterterm.

The situation improves if a symmetry, such as collective breaking [35, 36], is advocated

to protect these quantities, at least at one-loop level, or if one assumes that γ and β are

dominated by the lightest set of resonances in the composite sector, saturating generalized

Weinberg sum rules [12, 13], in close analogy to what happens in QCD. As far as the Higgs

mass is concerned, we see from eq. (2.6) that, at fixed ξ, it is enough to make β finite to

be able to predict the Higgs mass.

In CHM with partial compositeness, the largest source of explicit breaking of the global

symmetry comes from the mass term mixing the top with the composite sector. In first

approximation, we can switch off all other sources of breaking, including the electroweak

SM couplings g and g′. The estimate of the Higgs mass is then necessarily linked to the

mechanism generating a mass for the top. Let us first consider the case in which both tL
and tR are elementary. In this case two mass mixing terms εL and εR are required to mix

them with fermion states of the composite sector. The top mass goes like

Mtop ∼
εLεR
Mf

sh , (2.8)

where by Mf we denote the mass (taken equal for simplicity) of the lightest fermion reso-

nances in the composite sector that couple to tR and tL. In the limit in which ε is the only

source of explicit symmetry breaking, a simple NDA estimate gives the form of the factors

γ, β entering in the Higgs potential (2.4):9

γ ∼ Nc

16π2
ε2M2

f , β ∼ Nc

16π2
ε4 , (2.9)

where Nc = 3 is the QCD color factor. Plugging eqs. (2.9) and (2.8) in eq. (2.6) gives

M2
H '

Ncε
4

2π2f2
ξ ∼ Nc

2π2
M2

top

M2
f

f2
(tR elementary) . (2.10)

This estimate reveals a growth of the Higgs mass with the top partners mass scale. If one

assumes that the composite sector is characterized by the single coupling constant gρ [14],

we expect that Mf ' gρf . Indirect bounds on the S parameter require gρf & 2 TeV. For

9The estimate (2.9) changes when fields in higher representations are considered. For instance, β ∼
NcM

2
f ε

2

16π2 when fields in the 14 are considered [34].
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values of f . 1 TeV this implies gρ & 2. In many explicit models [10–13] it has been

shown that such a choice results in a too heavy Higgs. Indeed, a 126 GeV Higgs is attained

only if one assumes that another mass scale characterizes the composite sector and one

has relatively light fermion resonances in the composite sector, with Mf < gρf . Although

the splitting required between Mf and gρf is modest, it is not easy to argue how it might

appear in genuinely strongly coupled non-SUSY theories.

Another possibility is having tL elementary and tR fully composite. We can now have

a direct mixing between tL and tR, in principle with no need of composite resonances, that

can all be taken heavy. Denoting by ε this mass mixing term, we get

Mtop ' εsh . (2.11)

Proceeding as before, we get

M2
H '

Ncε
4

2π2f2
ξ =

Nc

2π2
M2

top

M2
top

v2
(tR composite) . (2.12)

We see that the Higgs mass is at leading order independent of the details of the composite

sector and tends to be too light.10 Of course, this is the case in the assumption that

the top mixing term is the dominant source of explicit SO(5) breaking. One can always

add extra breaking terms to raise the Higgs mass. Clearly, this is quite ad hoc, unless

these terms are already present for other reasons. This happens in the concrete model

with composite tR introduced in [16], where anomaly cancellation and absence of massless

non-SM states require adding exotic elementary states that necessarily introduce an extra

source of explicit SO(5) breaking. We have explicitly verified in the model of [16] that the

estimate (2.12) captures to a good accuracy the top contribution to the Higgs mass. This

is still too light, despite the presence of additional sources of SO(5) breaking, that cannot

be taken too large for consistency. We conclude that models with a composite tR, at least

those where the top sector plays a key role in the EWSB pattern, lead to a too small Higgs

mass. For this reason, we will not consider in this paper models where tR is fully composite

and only focus on the case where both tL and tR are elementary.

Let us now briefly mention on how ξ can be tuned to the desired value. There are

essentially two ways to do that in a calculable manner: either |γmatter| � |γgauge|, in which

case the cancellation takes place mostly inside the matter sector, or |γmatter| ∼ |γgauge|, so

that the gauge and matter contributions can be tuned against each other (see, for example,

the discussion in section 4 of [12]). Both options are generally possible, with the exception

of minimal (i.e. where ε is the only source of SO(5) violation in the matter sector) models

with a composite tR embedded in a fundamental of SO(5), where one can rely only on the

second option.

2.3 Higgs potential in SUSY models

Let us now consider more specifically the Higgs potential in SUSY models. As we mentioned

in the introduction, no tree-level D-term contribution to the potential is present in our

10The problem of a too light Higgs when tR is fully composite (when embedded in a 5 of SO(5)) was

already pointed out in [12], where a formula like eq. (2.12) (see eq. (5.14)) was derived for a particular

model.
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models, in contrast to many SUSY little Higgs constructions. The latter are based on

global unitary symmetries, where one typically embeds the two MSSM Higgs doublets

in two distinct multiplets of the underlying global symmetry group. Because of that,

one generally ends up in having too big D-term contributions to the Higgs mass, whose

cancellation usually requires some more model building effort. In our case, instead, the

two Higgs doublets are embedded in a single chiral field q4 that is in the 4 of the unbroken

SO(4) group. More precisely, the two Higgs doublets Hu,d are embedded in q4 as follows:

q4 =
1√
2

(
− i(H(u)

u + H
(d)
d ), H(u)

u −H
(d)
d , i(H(d)

u −H
(u)
d ), H

(u)
d + H(d)

u

)
, (2.13)

where the superscript denotes the up or down component of the doublet. Thanks to the

underlying global symmetry, the Hu and Hd soft mass terms are equal, thus vu = vd and

tan β = 1. The mass eigenstates are simply the real and imaginary components of q4. Im q4
is identified with the heavy Higgs doublet, while Re q4 is the light (SM) Higgs doublet. No

D-term contribution affects the Higgs mass. In fact, at tree-level the SM Higgs is massless

and its VEV is undetermined. Of course, the situation changes at one-loop level, because

of the various sources of violation of the SO(5) global symmetry. The SM Higgs will still

sit along the flat direction (i.e. tan β remains one at the quantum level), but quantum

corrections will lift the flat direction, fix its VEV and give it a mass. As explained at

the beginning of subsection 2.1, being the light Higgs doublet a pNGB, it is convenient to

parametrize its potential in terms of the sine of the field, as in eq. (2.2). From now on, for

simplicity, we denote the SM light Higgs doublet as the Higgs and denote by h the Higgs

field in the unitary gauge, matching the notation with that introduced at the beginning of

the subsection 2.1.

In the Dimensional Reduction (DRED) scheme the one-loop Higgs potential V (1) is

given by

V (1)(sh) =
1

16π2

∑
n

(−1)2sn

4
(2sn + 1)mn(sh)4

(
log

m2
n(sh)

Q2
− 3

2

)
=

1

64π2
STr

[
M4(sh)

(
log

M2(sh)

Q2
− 3

2

)]
,

(2.14)

where m2
n(sh) are the Higgs-dependent mass squared eigenvalues for the scalars, fermions

and gauge fields in the theory and we have denoted the sliding scale by Q. When the

mass eigenvalues are not analytically available, we compute the log M2 term by using the

following identity, valid for an arbitrary semi-positive definite matrix M , see e.g. ref. [37]:

M4 log M2 = lim
Λ→∞

(
1

2
Λ4 − Λ2M2 + M4 log Λ2 − 2

∫ Λ

0

x5dx

x2 + M2

)
. (2.15)

The RG-invariance of the scalar potential at one-loop level reads

∂

∂ log Q
V (1) + βλI

∂

∂λI
V (0) − γnΦn

∂

∂Φn
V (0) = 0, (2.16)

where the indices I and n run over all the masses and couplings (including soft terms)

and all the scalar fields in the theory, respectively, and V (0) denotes the tree-level scalar

– 9 –
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potential with the addition of soft terms. By expanding eq. (2.14) for sh � 1, we get the

explicit form for γ and β defined in eq. (2.4). As we already pointed out in section 2.1,

in first approximation we can switch off all SM gauge interactions and keep only the top

mixing masses ε as explicit source of symmetry breaking. In this limit, only colored fermion

and scalar fields contribute to the Higgs potential (2.14).

When all sources of SUSY breaking, denoted collectively by m̃, are switched off, SUSY

requires

lim
m̃→0

V (h) = 0 . (2.17)

However, one has to be careful in properly taking the two limits m̃→ 0, and sh → 0, since

in general they do not commute. The cancellation (2.17) is only manifest when we first

take the m̃ → 0 limit. In practice, however, we only expand in sh since the sources of

SUSY breaking cannot be taken too small.

When the soft terms in the composite sector are SO(5) invariant and the SM gauge

interactions are switched off, so that the only SO(5) violating term is the superpotential

term (2.1), the β-functions βλI and the anomalous dimensions γn appearing in eq. (2.16) are

necessarily SO(5) invariant at one-loop level. As a consequence, neither the second nor the

third term in eq. (2.16) can depend on sh and hence the sh-dependent one-loop potential

V (1) is RG invariant and finite. In this case, in contrast to the MSSM, the electroweak scale

ξ defined in eq. (2.5) is only logarithmically sensitive to the soft masses when these are

taken parametrically large. The global symmetry breaking scale f is quadratically sensitive

to the soft mass terms associated to the fields responsible for this breaking when these are

taken parametrically large. In our models such fields are always in the gauge sector, where

we provide a dynamical mechanism of SUSY breaking. For this reason and for simplicity,

we do not introduce composite soft mass terms in the gauge sector.

When the SM gauge interactions are switched on, βλI and γn are no longer SO(5)

invariant and can depend on sh. Although holomorphy protects the superpotential from

quantum corrections, the Kähler potential is renormalized and the gauging of SU(2)L ×
U(1)Y explicitly breaks the SO(5) global symmetry. This implies that the physical, rather

than holomorphic, couplings of the composite sector entering in the superpotential split

into several components with different RG evolutions, depending on the SU(2)L × U(1)Y
quantum numbers of the involved fields. In what follows, we take the physical couplings

to be all equal at the scale f . Similarly, the RG flow induced by the SM gauge couplings

gives rise to SO(5) violating contributions to the soft mass terms. In the models we will

consider this dependence appears only at order s2
h. It implies that the RG flow of the

tree-level soft terms contribute to γ and induce a quadratic sensitivity to the wino and

bino soft terms suppressed by a one-loop factor ∼ g2/(16π2). A “Higgs soft mass term” of

the form 1
2m̃2

Hf2s2
h, even if absent at tree-level, is radiatively generated by the bino and

wino masses m̃g. A radiatively stable assumption about the Higgs soft term m̃2
H is to take

it at the scale f of order

|m̃2
H | ∼

g2

16π2
m̃2
g . (2.18)

In this way, we can neglect its effect on the one-loop potential.
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3 Minimal SO(5) → SO(4) model

A simple supersymmetric pNGB Higgs Model with elementary tL and tR can be constructed

using two colored chiral multiplets NL,R in the 5 of SO(5), two colored SO(5) singlet

fields SL,R, two color-neutral multiplets in the 5, q and ψ, and a complete singlet Z. All

these multiplets are necessary to have a linear realization of the global symmetry breaking

SO(5)→ SO(4) without unwanted massless charged states. The superpotential reads

W =
∑
i=L,R

(εiξ
a
i N

a
i + λiSiq

aNa
i ) + mNNa

LNa
R + mSSLSR + W0(Z, q, ψ) , (3.1)

where

W0(Z, q, ψ) = hZ(qaqa − µ2) + mψqaψa . (3.2)

We embed the elementary qL and tR into spurions ξL and ξR in the 5 of SO(5) for mini-

mality:11

ξL =
1√
2


bL
−ibL
tL
itL
0

 , ξR =


0

0

0

0

tR

 . (3.3)

The superpotential (3.2) corresponds to an O’Raifeartaigh model of SUSY breaking. For

µ2 > m2
ψ/(2h2), this model has a SUSY breaking minimum with

〈qa〉 =
f√
2
δ5
a , (3.4)

where

f =

√
2µ2 −

m2
ψ

h2
. (3.5)

The scalar VEV’s of Z and ψa, undetermined at the tree-level, are stabilized at the origin

by a one-loop potential. The symmetry breaking pattern is the minimal

SO(5)×U(1)X → SO(4)×U(1)X , (3.6)

where SU(2)L × U(1)Y is embedded in SO(4) × U(1)X in the standard fashion. The four

NGB’s hâ can be described by means of the σ-model matrix as

qa = Uabq̃b = exp

(
i
√

2

f
hâT â

)
ab

q̃b, (3.7)

where T â are the SO(5)/SO(4) broken generators defined as in the appendix A of ref. [16]

and q̃ encodes the non-NGB degrees of freedom of q. In the unitary gauge we can take

11In order to keep the notation light, we omit in what follows the color properties of the fields, that

should be clear from the context.
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hâ = (0, 0, 0, h), and the matrix U simplifies to

U =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0
√

1− s2
h sh

0 0 0 −sh

√
1− s2

h


. (3.8)

The effect of the SUSY breaking is not felt at tree level by the colored fields NL,R,

SL,R mixing with the top. We add to the SUSY scalar potential the SUSY breaking soft

terms Vsoft = V E
soft + V C

soft with

V E
soft = m̃2

tL|t̃L|2 + m̃2
tR|t̃R|2 , V C

soft =
∑

i=NL,R,SL,R

m̃2
i |φi|2 , (3.9)

and soft masses for the elementary gauginos of the SM gauge group, m̃1,2,3. We neglect

the smaller soft mass terms radiatively induced by W0 and for simplicity we have not

included B-terms. Let us analyze the tree-level mass spectrum of the model. We fix

the mass parameter mS = 0, since all the states remain massive in this limit,12 and take

λL = λR = λ, so that the composite superpotential enjoys a further Z2 symmetry (exchange

of L and R fields), broken only by the mixing with SM fermions. We also assume all

parameters to be real and positive. Before EWSB, the fermion mass spectrum in the

matter sector is as follows. A linear combination of fermions, to be identified with the top,

is clearly massless. The SU(2)L doublet with hypercharge 7/6 contained in NL,R does not

mix with other fields and has a mass equal to MQ7/6
= mN . The doublet with hypercharge

1/6 mixes with qL and gets a mass MQ1/6
=
√

m2
N + ε2

L. Two SU(2)L singlets get a a mass

square equal to M2
S±

= 1/2(m2
N + ε2

R + λ2f2 ±
√

(m2
N + ε2

R)2 + 2m2
Nf2λ2). The scalar

spectrum is analogous, with the addition of a shift given by the soft masses (3.9). After

EWSB, the top mass is

Mtop =
εLεRfλ

√
2
√

m2
N + ε2

L

√
2ε2
R + f2λ2

sh

√
1− s2

h =
εLεRf2λ2

2
√

2MQ 1
6

MS+MS−

sh

√
1− s2

h . (3.10)

The gauge sector contains the SM vector superfields w(0) and b(0) and the chiral su-

perfields qa, ψa and Z. For simplicity, we neglect all soft mass terms in this sector, but

the SM gaugino masses. Regarding the fermion spectrum, the SO(4) fourplets qn and ψn
(n = 1, 2, 3, 4) get a Dirac mass mψ. A linear combination of ψ5 and Z, we call it p5, gets

a Dirac mass, together with q5,
√

2(f2h2 + m2
ψ). The orthogonal combination of ψ5 and Z

(χ5) is massless being the goldstino associated to the spontaneous breaking of SUSY. In the

scalar sector, Re qn are identified as the pNGB Higgs, while Im qn get a mass
√

2mψ. These

two are the mass eigenstates of the two Higgs doublets Hu, Hd introduced in section 2.1.

12We checked that, if taken non-zero, its contribution to the potential does not change qualitatively the

conclusions of our analysis.
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The partners of ψn and p5 will get the same mass as the fermions while the partner of

the goldstino χ5 is a pseudo-modulus, whose VEV is undetermined at the tree-level. This

field is stabilized at the origin by a one-loop induced potential. Its detailed mass depends

on the ratio µ2h2/m2
ψ. In the region defined in the next subsection, its mass is of order

mψh/(2π) ∼ 50 ÷ 70 GeV. The real and imaginary parts of q5 have masses
√

2fh and√
2(f2h2 + m2

ψ), respectively.

Let us discuss the possible values of the parameters of the model. Demanding Mtop to

be around 150 GeV at the TeV scale gives a lower bound on the smallest possible value of

the Yukawa coupling λ at the scale f , obtained by taking εL,R →∞ in eq. (3.10):

λmin(f) & 1.2 . (3.11)

An upper bound on λ is found by looking at its RG running. For h� 1, the Yukawa cou-

pling λ is UV free for λ(f) . 0.9 and develops a Landau pole for higher values. Demanding

that the pole is at a scale greater than 4πf gives the upper bound:

λmax(f) . 1.7 . (3.12)

Putting all together, we see that the maximum scale for which the model is trustable and

weakly coupled is obtained by taking λ = λmin, in which case we get a Landau pole at

around 300f . This limiting value is never reached in realistic situations, but Landau poles

as high as 100f can be obtained. The current bound on the top partner with 5/3 electric

charge puts a direct lower bound on mN [21]:13

MQ7/6
= mN & 800 GeV . (3.13)

Demanding a value for λ as close as possible to the minimum value (3.11), the top

mass (3.10) favours regions in parameter space where tL and tR strongly mix with the

composite sector: εL,R � mN .

3.1 Higgs mass and fine-tuning estimate

As we have already remarked, when V C
soft is SO(5) invariant, the one-loop matter contri-

bution to the Higgs potential is RG invariant and finite. Since the explicit form of βmatter

is quite involved, there is not a simple analytic expression for the Higgs mass valid in all

the parameter space. In particular an expansion for small values of εL,R is never a good

approximation because, as explained, these mixing should be taken large.

The region of parameter space which realizes EWSB with ξ = 0.1 and gives MH =

126 GeV is essentialy unique. In most of the parameter space γgauge and γmatter are both

positive and bigger than βmatter, and no tuning is possible to obtain the right value of ξ.

The only region where γgauge < 0 is found for m̃g, mψ . f where, however, the size of

γgauge is smaller than the natural size of γmatter, eq.(2.9). The bound (2.18) forces m̃2
H

13This bound can be applied directly only if the lightest top partner is this one with Q = 5/3, in which

case it decays in tW+ with BR ' 100%. For lower values of the BR the bound is weaker. We take a

conservative approach and use the bound as a constraint on the mass of this particle.
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to be negligibly small. From these considerations we see that γmatter has to be tuned in

order to become smaller than its natural value. The requirement of perturbativity up to

Λ = 100f fixes λ(f) ' 1.3. Regarding mN , a lower bound is given by eq.(3.13) while an

upper bound is given from the fact that, increasing mN requires a higher value of εL in

order to reproduce Mtop, see eq.(3.10), and, as a consequence, γmatter increases, which is

the opposite of what it is necessary to get ξ. This forces mN ∼ f , near its lower bound.

Reproducing Mtop fixes also εL, εR � f . The Higgs mass is not sensitive to the stop soft

masses m̃tL,R and its correct value is found for composite soft masses m̃ ∼ 3.5f , taken

all equal. Finally, in order to fix ξ = 0.1, m̃tL and m̃tR have to be tuned in the region

m̃tL � m̃tR ∼ m̃.

An approximate analytic formula for M2
H in this region is obtained by expanding for

λf � mN , m̃ � εL,R, where m̃ is a common universal soft mass term (the last one is a

good approximation because MH does not depend on the stop soft masses). In this limit

we get

M2
H '

Nc

2π2
M2

top

M2
top

v2

(
5 log

(
m̃2

λ2
topf2

)
+ 4x log

(
x

1 + x

)
+

1

2
− 4 log 2

)
, (3.14)

where

x =
m̃2

m2
N

. (3.15)

It is immediate to see that for values of m̃ & mN ∼ f ,14 a 126 GeV Higgs is reproduced.

Let us briefly discuss the fine-tuning. We define it here as the ratio between the value of

ξ we want to achieve and its natural value given by (2.5) in absence of cancellations. This is

a crude definition, but it has the advantage to estimate the actual fine-tuning provided by

cancellations rather than the sensitivity, without the need to worry about possible generic

sensitivities. The electroweak scale is determined by eq. (2.5). As argued above most of

the tuning arises within the matter sector. We can then neglect γgauge and determine the

expected value of ξ by comparing γmatter and βmatter. We get15

γmatter ∼
Nc

8π2
λ2

topf2m̃2 , βmatter ∼
Nc

8π2
λ4

topf4 . (3.16)

The fine-tuning can then be written as16

∆ ∼ m̃2

f2

1

ξ
, (3.17)

and is always higher than the minimum value 1/ξ. From eq. (3.14) we see that MH grows

with m̃ in the region of interest and hence we expect a linear increase of ∆ with the Higgs

mass.
14We have numerically checked that the range of applicability of eq. (3.14) extends to the region with

mN ∼ f .
15As explained below eq. (2.17), the limits sh → 0 and m̃ → 0 do not commute. As a result, βmatter in

eq. (3.16) does not vanish for m̃→ 0.
16Another possible source of fine-tuning might arise from the origin of the scale f as the cancellation of

the two terms in eq. (3.5). In the region of interest no significant cancellation occurs and we neglect this

effect.
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Figure 2. Fine-tuning of the minimal model, (in %) as a function of the Higgs mass for ξ ' 0.1.

In this scan we fixed λ(f) = 1.29 and h(f) = 0.44, so that both λ and h reach a Landau pole at

the same scale Λ ∼ 100f , mN = 1.2f and picked randomly εL ∈ [8.5f, 10f ], mψ ∈ [0.7f, 1.5f ],

m̃g ∈ [0.5f, f ], m̃ ∈ [2.5f, 4.5f ], m̃tL ∈ [4.5f, 6.5f ], m̃tR ∈ [f, 3f ] and m̃2
H within the bound (2.18).

We fixed Mtop by solving for εR and then selected points with ξ ' 0.1. The pink strip represents

the current Higgs mass 1σ-interval as reported in ref. [38].

In order to check these considerations we performed a parameter scan in the restricted

region described at the beginning of the section. We fixed the top mass by solving for εR
and then obtained the minimum of the potential and the Higgs mass from the full one-loop

expression of eq.(2.14). We report in figure 2 a plot of the fine-tuning computed using the

standard definition of ref. [39] as a function of the Higgs mass. As can be seen, we obtain

∆−1 ∼ 2% for MH = 126 GeV, in reasonable agreement with the rough estimate (3.17).

Let us now discuss the spectrum of new particles. In this region, the electroweak

gauginos are relatively light, m̃g . f ∼ 800 GeV and the two higgsino doublets (from ψn
and qn) have also a mass mψ ∼ 800 GeV. The stops and their partners are heavy, above

2 TeV, while the fermion top partners are usually below the TeV, the lightest being the

singlet with Q = 2/3 and a mass MS− ' 660 GeV.17 The gluinos do not contribute to the

Higgs potential at one loop, therefore they can be taken heavy (above the experimental

bounds) without increasing the fine-tuning.

4 Model with vector resonances

The model we consider in this section is essentially the IR effective description of the UV

model with elementary tR introduced in ref. [16]. The symmetry breaking pattern is

SO(5)× SO(4)2 ×U(1)X → SO(4)D ×U(1)X , (4.1)

17The recent CMS analysis [40] rules out charge 2/3 top partners below ∼ 700 GeV. A careful phe-

nomenological analysis should be performed to check if the model with the benchmark parameters taken is

ruled out or not. Slightly decreasing ξ or the scale of the Landau pole are two possible solutions to increase

the mass of MS− beyond 700 GeV.
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where SO(4)2 is gauged and SO(4)D is the diagonal subgroup of SO(4)2 and SO(4)1 ⊂
SO(5). The electroweak gauge group is SU(2)0

L × U(1)0
Y = GSM ⊂ SO(4)1 × U(1)X . This

group structure introduces a partial compositeness mechanism also for the electroweak

vector multiplets, in close analogy to what happens in non-SUSY CHM in presence of

vector resonances.

The superpotential is

W =
∑
i=L,R

(εiξ
a
i N

a
i + λiX

n
i qanN

a
i ) + mNNa

LNa
R + mXXn

LXn
R + W0(Z, q) , (4.2)

where NL,R and XL,R are colored fields in the (5, 1), (1, 4) of SO(5)×SO(4)2, respectively,

and q is a color-singlet in the (5, 4) (a = 1, . . . , 5, n = 1 . . . , 4). The spurions ξL,R are

taken as in eq. (3.3). The superpotential term W0 reads

W0 = h

(
qnaZabq

n
b −

f2

2
Zaa

)
, (4.3)

where Z is a field in the symmetric 14⊕ 1 of SO(5). The field q acquires a VEV

〈qna 〉 =
1√
2
fδna (4.4)

in its scalar component. In this vacuum the symmetry group G is broken as in eq. (4.1)

and SUSY is broken by the rank condition [41]. The spontaneous breaking of SUSY is

necessary to give mass to the fermions and the scalars inside q, which are the higgsinos and

the scalar partners of the NGB Higgs. The effect of the SUSY breaking is not felt at tree

level by the colored fields mixing with the top, i.e. NL,R and XL,R. Like in the previous

model, eq. (3.9), we add SUSY breaking soft terms for tL,R, NL,R and XL,R, neglecting

B-terms and the smaller soft mass terms radiatively induced by W0.

Ten NGB’s result form the breaking (4.1): four hâ and six πA transforming in the

4 and (3, 1) ⊕ (1, 3) of SO(4)D, respectively. The hâ correspond to the four real Higgs

components while the extra unwanted πA’s are eaten by the SO(4)2 gauge fields. In the

unitary gauge hâ = (0, 0, 0, h), πA = 0, we have

qna = Uabq̃
n
b , (4.5)

where q̃ encode the non-NGB degrees of freedom of q and U is the matrix (3.8).

The matter sector includes the fields NL,R, XL,R, and the spurions ξL,R, while the

gauge sector include the SM gauge fields, the fields Z and the non-NGB components q̃ of

q. All the parameters in the superpotential (4.2) are taken positive and we neglect mX .

We also assume λL = λR = λ for simplicity.18 Before EWSB, the fermion mass spectrum

in the matter sector is as follows. One linear combination of fermions, to be identified with

the top, is clearly massless. The SU(2)L doublet with hypercharge 7/6 and 1/6 contained

in NL,R and XL,R have a mass square M2
Qi± = 1/2(αi + λ2f2 ±

√
α2
i + 2m2

Nf2λ2), where

18In the model of ref. [16], these choices are dynamically realized. For example, mX would correspond to

a mass term for the dual magnetic quarks and is not generated in the superpotential.
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α7/6 = m2
N and α1/6 = m2

N + ε2
L. The SU(2)L singlet has a mass MS =

√
m2
N + ε2

Rf2. The

scalar spectrum is analogous, with the addition of a shift given by the soft masses (3.9).

After EWSB, the top mass is

Mtop =
εLεRfλ

√
2
√

m2
N + ε2

R

√
2ε2
L + f2λ2

sh

√
1− s2

h =
εLεRλ2f2

2
√

2MQ 1
6+

MQ 1
6−

MS

sh

√
1− s2

h . (4.6)

The gauge sector contains the chiral superfields q, Z, the vector superfields ρ in the

adjoint of SO(4)2, in addition to the usual SM vector superfields w(0) and b(0). For simplic-

ity, we neglect all soft mass terms in this sector, but the SM gaugino mass terms, namely

the SO(4)2 gaugino mass terms and scalar mass terms for the Z and q fields, as well as

B-terms. In this limit, all the fields of the gauge sector, but qn5 and Z5n, do not feel at tree-

level the SUSY breaking induced by the F -term of Z55 and have a SUSY spectrum. The

chiral multiplets (qmn + qnm)/
√

2 and Zmn combine and get a mass
√

2hf ; the chiral fields

(qmn − qnm)/
√

2 combine with the SO(4)2 vector multiplets into a massive vector super-field

with (up to O(gSM/gρ) effects)

Mρ = gρf , (4.7)

where gρ is the coupling of the SO(4)2 gauge theory. The scalar field Z55 is stabilized at

the origin at the radiative level and gets a mass ' hf/π. Its fermion partner (a complete

singlet) is massless at this order, being the goldstino. The higgsinos ψq5 and ψZ5m mix and

get a Dirac mass hf , the scalars Z5m also get a mass hf . The scalars in the 4 of SO(4)2,

qm5 , behave as in the model of section 3: Re qm5 are massless at tree-level being the pNGB

Higgs doublet while Im qm5 get a mass
√

2hf .

Let us discuss on the possible range of the parameters of the model. The top mass gives

the same lower bound found in eq. (3.11) for λ(f). Demanding vector resonances masses

above 2 TeV fixes, for f ' 800 GeV, gρ(f) ' 5/2 and a Landau pole for gρ at Λ ' 4πf .

We can determine the values of λ and h at the scale f by the requirement that they reach

a Landau pole at the same scale Λ where gρ blows up:

λ(f) ' 2 , h(f) ' 0.9 . (4.8)

Taking λ ' 2 gives an upper bound on mN , which comes from the bound (3.13). We get

mN . 1.2f. (4.9)

4.1 Higgs mass and fine-tuning estimate

We performed a numerical study of the Higgs potential by fixing λ and h as in eq. (4.8),

one mass mixing parameter by demanding Mtop(TeV) ' 150 GeV and scanning over the

remaining parameters. Even tough the analysis is numerical, it is possible to get an under-

standing of the preferred region in parameter space through some considerations. Unlike

the model with no vector resonances discussed in section 3, now γgauge is negative and

increases with the gaugino masses (see eq.(4.10)), and it can be tuned against γmatter in

order to obtain ξ = 0.1 without the need to tune the latter to unnaturally small values.

The correct Higgs mass can be obtained by raising either εL and/or the composite soft
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Figure 3. Fine-tuning of the model with vector resonances (in %) as a function of the Higgs mass

for ξ ' 0.1. We fixed λ(f) = 2.1, h(f) = 0.9 and gρ(f) = 2.6 so that λ, h and gρ reach a Landau

pole at the same scale Λ ∼ 4πf , mN = 1.2 and picked randomly εL ∈ [3f, 7f ], m̃g ∈ [2.5f, 4.5f ],

m̃ ∈ [f, 2.5f ], m̃tL ∈ [f, 4f ], m̃tR ∈ [2f, 5f ] and m̃2
H within the bound (2.18). We fixed Mtop by

solving for εR and then selected points with ξ ' 0.1. The pink strip represents the current Higgs

mass 1σ-interval as reported in ref. [38].

masses, taken all equal to m̃. A smaller tuning is achieved by taking εL � εR ∼ f and

m̃ ∼ f . In order to further decrease the tuning (i.e. to decrease γmatter and, therefore, the

needed gaugino masses) the preferred stop soft masses are m̃tR > m̃tL ∼ m̃. Finally, in

order to get ξ = 0.1 one can tune γgauge choosing the right wino and bino soft masses. Their

typical size is m̃g ∼ 3f . Unfortunately we have not found a simple analytic expression for

the Higgs mass in this region of parameter space.

Let us briefly discuss the necessary amount of fine-tuning. In the above region of

interest, most of the tuning arises from a cancellation occurring between γgauge and γmatter.

In fact, the large gaugino mass is needed only to get the correct EWSB pattern. For

mN ∼ εR ∼ f , m̃g � f, Mρ, m̃ > f and g � gρ, we have

γgauge ∼ −
3g2f2

32π2
m̃2
g

(
log

m̃2
g

f2
− 1

)
,

γmatter ∼
Ncf

2

16π2
m̃2

(
log

ε2
L

m̃2
+ 1

)
.

(4.10)

We see that γgauge and γmatter have opposite signs and fine-tuning is possible. In the region

of interest, one can grossly estimate βmatter ∼ Ncf
4/(16π2). Using eq. (2.5), we roughly get

∆ ∼ m̃2

f2

1

ξ
, (4.11)

and coincides with the estimate (3.17) done for the model in section 3. Since MH increases

with m̃, we expect again the fine-tuning to grow with MH .
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We report in figure 3 a plot of the fine-tuning, computed using the standard definition

of ref. [39], as a function of the Higgs mass for our parameter scan. As can be seen, the

tuning is of the order ∆−1 ∼ 1% and is in rough quantitative agreement with eq. (4.11).

Turning to the new-physics spectrum, in this model we find heavy electroweak gaug-

inos, m̃g ' 3 TeV and heavy higgsinos, Mhiggsinos ' 700 − 800 GeV. The stops and their

partners are usually above the TeV, while the fermion top partners are below, the lightest

having Q = 5/3 and a mass MQ5/3
' 800−900 GeV. As for the previous model, the gluinos

can be decoupled without increasing the fine-tuning.

5 Conclusions

In this paper we have considered a possible framework for models based on SUSY and a

pNGB Higgs with partial compositeness, focusing on the Higgs potential and the expecta-

tion for the Higgs mass. We have constructed two specific models of this form where the top

quark is elementary and the Higgs arises as a pNGB of a linearly realized SO(5)→ SO(4)

breaking pattern. In both models the matter fields in the composite sector are taken in

the fundamental or singlet representations of SO(5). En passant, we have generally shown

that, independently of SUSY, a scenario where tR is fully composite is disfavoured because

it tends to give a too light Higgs.

The first model, with no vector resonances, can be seen as an elementary linear com-

pletion of a pNGB Higgs, while the second one is more properly interpreted as an IR

description of a strongly coupled gauge theory in terms of composite resonances, although

none of the above results depends on the details of the microscopic completion: in particu-

lar, the Higgs potential is calculable and the only logarithmic UV sensitivity is introduced

by the gaugino soft mass terms.

In both models the parameter space is quite constrained, especially from the appear-

ance of Landau poles for certain Yukawa couplings and from the top mass constraint. Re-

quiring a reasonable range of perturbativity and reproducing the top mass implies fermion

top partners in both models with a mass around the compositeness scale f (∼ 800 GeV

for reasonably natural theories), independently of the Higgs mass. These are the lightest

exotic colored states, while the pNGB nature of the Higgs allows to decouple stops and

gluinos with no fine-tuning issues. The minimal model with no vector resonances predicts

electroweak gauginos and higgsinos with a mass near 800 GeV, while in the model with

vectors electroweak gauginos are heavier, usually above the TeV scale.

From the above discussion, we expect that the most sensitive channels for the discovery,

or exclusion, of these models will be fermion top partner searches. In particular, the

bound on the Q = 5/3 top partner mass already puts severe constraints on the parameter

space of our models. A prominent phenomenological feature, relevant for superpartners

phenomenology, is the possible presence of an R-parity which, in particular, makes the

lightest supersymmetric particle stable. The deviations in the Higgs couplings to gauge

bosons and top quark are of order ξ and are analogous to those of non-SUSY CHM.
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A A more accurate parametrization of the Higgs potential

For sh � 1, the tree-level + one-loop potential V = V (0) + V (1) admits an expansion of

the form

V = −γs2
h + βs4

h + δs4
h log sh +O(s6

h) . (A.1)

The last non-analytic term cannot obviously be obtained by a Taylor expansion around

sh = 0. It arises at the one-loop level and is due to the contribution of particles whose mass

vanishes for sh = 0. In a naive expansion around sh = 0, its presence would be detected

by the appearance of a spurious IR divergence in the coefficient β. At first order in δ, the

non trivial minimum of the potential is found at

〈s2
h〉 ≡ ξ = ξ0

(
1− δ

4β
(1 + 2 log ξ0)

)
, (A.2)

where

ξ0 =
γ

2β
(A.3)

is the leading order minimum for δ = 0. The Higgs mass is given by

M2
H =

8β

f2
ξ0(1− ξ0) +

4δξ0

f2

(
1− ξ0

2
+ ξ0 log ξ0

)
. (A.4)

For ξ0 � 1 we get

M2
H ' (M0

H)2

(
1 +

δ

2β

)
, (A.5)

where

(M0
H)2 ' 8β

f2
ξ0 (A.6)

is the leading order mass for δ = 0. The Higgs mass squared formula reported in eq. (3.14)

refers to eq. (A.5), where the non-analytic term is included at linear order in δ.

In the models we considered, the particles massless at sh = 0 are always the top in the

matter sector and the W and the Z gauge boson in the gauge sector. Correspondingly, the

explicit form of δ = δgauge + δmatter is universal and given by

δmatter = − Nc

8π2
λ4

topf4 ,

δgauge =
3f4(3g4 + 2g2g′2 + g′4)

512π2
,

(A.7)

with Nc = 3 the QCD color factor and Mtop ≡ λtopv.
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B Unitarization of WW scattering

In theories where the Higgs is a pNGB the scattering amplitudes between the longitudinal

polarizations of the W and Z bosons, and the Higgs itself, for energies higher than the Higgs

mass grow quadratically with the energy, A ∼ E2/f2, violating perturbative unitarity at a

scale Λ ∼ 4πf . At this scale, or before, new degrees of freedom (in the form of either strong

dynamics effects or new perturbative fields) must become important in the scattering to

restore unitarity. In the following we will see how the field content present in each model

is exactly what is needed to restore perturbative unitarity of WW scattering, as expected

from linear models.

In the SO(5) → SO(4) coset, all hâhb̂ scattering amplitudes can be parametrized in

terms of only two functions of the Mandelstam variables, A(s, t, u) and B(s, t, u) [32]:

A(hâhb̂ → hĉhd̂) = A(s, t, u)δâb̂δĉd̂+A(t, s, u)δâĉδb̂d̂+A(u, t, s)δâd̂δb̂ĉ+B(s, t, u)εâb̂ĉd̂. (B.1)

In our models, however, in the limit of zero SM gauging the gauge sector has a PLR
symmetry which fixes B(s, t, u) = 0. The NGB contribution to the scattering is universal

and given by

ANGB(s, t, u) =
s

f2
. (B.2)

The possible contributions to NGB scattering can be obtained simply by group theory and

the fact that bosonic states must be symmetric under the exchange of identical particles:

hâhb̂ scattering: 4⊗ 4 = (1; J = 0)⊕ (6; J = 1)⊕ (9; J = 0) , (B.3)

where J is the spin.

B.1 Minimal model SO(5)→ SO(4)

In this theory the only NGB present are the four components of the Higgs doublet, hâ,

and there is no gauge boson other than the SM ones. The gauge sector of the model is a

supersymmetrization of the liner σ-model presented in ref. [42] and in the appendix G of

ref. [32]. The only term in the Lagrangian relevant to WW scattering is the kinetic term

of the real part of q = (φ + iφ̃)/
√

2, which takes a VEV 〈φ〉 = (0, 0, 0, 0, f). Expliciting

the NGB dependence as φ(x) = U(hâ(x))〈φ〉
(

1 + η(x)
f

)
, where η(x) is a real singlet scalar

field with mass Mη =
√

2hf , we can write the Lagrangian as

Lkin =
1

2
(∂µη)2 − 1

2
M2
η η

2 +
f2

4
Tr [dµd

µ]

(
1 +

η

f

)2

, (B.4)

where we defined the Callan-Coleman-Wess-Zumino structures [43, 44] dâµT
â + Ea

µT
a =

iU †DµU and ∇µ = ∂µ − iEµ. The full NGB scattering amplitude in this theory can be

written as

A(s, t, u) =
s

f2

(
1− s

s−M2
η

)
, (B.5)

which evidently recovers perturbative unitarity for
√

s�Mη.
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B.2 Model with vector resonances

This model has ten Goldstone bosons: six πA in the adjoint representation of SO(4)D and

four hâ in the fundamental of SO(4)D. In the unitary gauge, where the Goldstone bosons

in the adjoint are eaten by the ρ gauge bosons, the study of their scattering is shifted to the

study of the ρρ scattering. With the aim to connect our study with previous bottom-up

studies of the effect of resonances in WW scattering in CHM and their phenomenology

at the LHC [32], in the following we will concentrate only on the study of the scattering

amplitudes among the four NGBs which form the Higgs doublet.

All contributions to NGB scattering, see eq.(B.3), come from the kinetic term of the

fields in the multiplet which takes a VEV triggering the spontaneous symmetry breaking,

in our case the real components of qna :

L = |Dµq
n
a |

2 =
∣∣∣iU †Dµq

n
a

∣∣∣2 = |i∇µq̃ + dµq̃ − gµq̃ρµ|2 , (B.6)

where we used eq.(4.5) to render explicit the NGB dependence. The fields q̃na transform

under the unbroken group SO(4)D ∼ SU(2)L × SU(2)R in the representations

q̃na : 1⊕ 9⊕ 6⊕ 4 = (1, 1)⊕ (3, 3)⊕ ( (1, 3)⊕ (3, 1) )⊕ (2, 2) . (B.7)

Its decomposition in terms of component fields is

q̃na (x) =

(
f√
2

+
η(x)

2

)
δna + ∆ALBR(x)(2TALTBR)na +

q̃Aρ (x)
√

2
(TA)na + i

q̃n5 (x)√
2

δa5, (B.8)

where the singlet η and the symmetric traceless ∆ are complex, while the antisymmetric q̃ρ
and the fundamental q̃5 are real fields. From eq.(B.3) we see that the only states which can

contribute to the scattering are the singlet (η), the gauge bosons (ρ) and the symmetric

(∆). Since we are interested only in the tree-level contribution to the scattering amplitude,

we can study them separately.

Let us start with the singlet η = (η1 + iη2)/
√

2. Setting ∆ and ρµ to zero in eq.(B.6)

one can arrive easily to the Lagrangian19

L ⊃ |∂µη|2+
1

2
Tr [dµd

µ]
∣∣∣µ+

η

2

∣∣∣2 =
1

2

(
(∂µη1)2+(∂µη2)2

)
+

f2

4
Tr [dµd

µ]

(
1+

η1

f
+

η2
1 +η2

2

4f2

)
.

(B.9)

In the parametrization of ref. [32] it is easy to recognize aη1 = 1
2 , aη2 = 0 and bη1 = bη2 = 1

4 .

From this we obtain the contribution of the η to the hh scattering amplitude:

Aη(s, t, u) = −1

4

s

f2

s

s−M2
η

, (B.10)

where Mη =
√

2hf . Setting to zero the scalars ∆ and η we can obtain the contribution

from the vector ρµ. The Lagrangian can be written as

L ⊃ f2

4
Tr [dµd

µ] +
f2

2
Tr
[
(gρρµ − Eµ)2

]
, (B.11)

19Here we also used that δnc (TATB)cdδ
n
d = δAB , δnc (T âT b̂)cdδ

n
d = δâb̂/2 and δnc (TAT b̂)cdδ

n
d = 0, where

TA and T â are, respectively, the unbroken and broken generators of SO(5)→ SO(4).
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recognizing that, in the notation of ref. [32], aρ = 1. The contribution to the scattering

amplitude which grows with the energy is

Aρ(s, t, u) = −3

2

s

f2
. (B.12)

The scalar ∆ = (∆1 + i∆2)/
√

2 is a complex field in the (3, 3) of SO(4). Its Lagrangian

can be written as

L =
∑
i=1,2

{
1

2
Tr[(∇µ∆i)

2]−
M2

∆i

2
Tr[∆2

i ] + a∆ifTr[∆dµd
µ] + . . .

}
, (B.13)

where, in components, ∆i = ∆ALBR
i (x)(2TALTBR)ba and where the dots represent terms

not relevant for WW scattering. In our case a∆1 = 1, a∆2 = 0 and M∆1 = M∆2 =
√

2hf .

The scattering amplitude is given by

A∆(s, t, u) =
(a2

∆1
+ a2

∆2
)

4

(
s

f2

s

s−M2
∆

− 2
t

f2

t

t−M2
∆

− 2
u

f2

u

u−M2
∆

)
. (B.14)

For energies larger than the masses of these resonances we have

Atot(s, t, u) = ANGB(s, t, u) + Aη(s, t, u) + Aρ(s, t, u) + A∆(s, t, u)' const. (B.15)

We see that, as expected, the exchange of heavy resonances restores unitarity before the

scattering amplitude becomes non perturbative.
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