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1 Introduction

The path towards the understanding of the origin of flavour takes us past fermion mass

matrices, which carry the imprint of the dynamics, if any, determining the structure of

fermion masses and mixing. Unfortunately, the SM physical flavour parameters, masses and

mixings, strictly speaking do not allow to reconstruct the fermion mass matrices. Indeed,

a change of the flavour basis would change the neutrino and charged lepton mass matrices,

Mν → V T
l MνVl, ME → V T

ecMEVl, (1.1)

but not the physical observables.

A top-bottom perspective is most often taken, plagued however by a landscape of

equally motivated options for the dynamical origin of the flavour structure (discrete and
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continuous symmetries [1–7], accidental symmetries [8, 9], partial compositeness [10, 11],

extra dimensions [12–15] or even anarchy [16] — see [17] for an overview and further refer-

ences), to be confronted with the limited data available. Even restricting to flavour symme-

tries, the large number of possible models reduces the significance of a successful prediction.

On the other hand, the mere assumption of the existence of a top-bottom perspective

allows, as we will see, to infer relevant information on the fermion mass matrices and

pursue a bottom-up approach, despite eq. (1.1). That is because the top-bottom perspective

implies the existence of a (unknown) privileged flavour basis, determined by the (unknown)

fundamental flavour theory, in which the fermion mass matrices are directly related to the

independent fundamental parameters of the theory from which they originate. Because of

eq. (1.1), in all other bases the mass matrix entries will instead be highly correlated, obscure

functions of the fundamental parameters. It is the former observation, together with the

peculiar experimental values of the flavour parameters (especially their hierarchies), and a

simple stability principle [18] that allows, in some cases, to infer a significant part of the

structure of the mass matrices. In turn, this may provide general, model independent hints

on the dynamics underlying the structure of the mass matrices.

We extend the work of [18] by applying the stability principle to the small “solar”

mass squared difference ∆m2
12. This allows us to identify all four stable neutrino mass

matrices. Interestingly, two of them uniquely correspond to specific neutrino mass pat-

terns. Hence in this context a future determination of the neutrino spectrum will have a

chance to uniquely identify the neutrino mass texture. We will mainly focus on the case

of “semi-degenerate” Majorana neutrinos, a neutrino pattern in which two neutrinos are

approximately degenerate and the third one is neither degenerate nor hierarchically differ-

ent, thus implying an overall neutrino mass scale within reach of future experiments. Such

a spectrum is uniquely associated to texture A in table 1. However, the results we will

obtain, which include stringent constraints on the lepton mass and mixing matrices and a

mild preference for one of the Majorana phases, will also apply to texture B.

This paper is organized as follows. After introducing the stability principle in section 2,

we derive the resulting possible structures of the neutrino mass matrix in section 3. Out of

these possibilities, we focus on the case of semi-degenerate neutrinos in section 4, discussing

implications for the neutrino and charged lepton contributions to the lepton mixing matrix.

In section 5 we return to the other possible stable structures for the neutrino mass matrix,

before concluding in section 6. Some details and important proofs are relegated to the

appendices: appendix A shows the derivations of the main results of section 3 in the limit

∆m2
12 → 0. Appendix B extends this to finite values of ∆m2

12 for the mass structure

discussed in section 4. Appendix C gives some details about the definition of the stability

principle and finally appendix D deals with the consequences of the stability assumption

on the charged lepton sector.

2 The stability principle

The assumption we use is quite basic. We assume that physical quantities, in particular

the hierarchical ones (the small ratio of charged fermion masses and the small ratio of
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the “solar” mass squared difference over the “atmospheric” one, |∆m2
12/∆m

2
23|), are stable

with respect to small (but finite) variations of the individual matrix entries.1 Such an

assumption is quite model-independent. It was introduced and systematically used in [18]

in the charged lepton sector. In this work, we extend that study to the entire lepton sector.

The motivation of the assumption is straight-forward: an “understanding” of the small-

ness of e.g. the light fermion masses requires that smallness not to be accidental, i.e. to be

stable with respect to variation of independent, fundamental parameters. This goes with-

out saying. What we are assuming is that all matrix elements correspond to independent

fundamental parameters.

The main caveat to our assumption is then that correlations among different matrix

elements might arise, for example as a consequence of a non-abelian symmetry. The latter

is of course a concrete possibility, widely studied in the literature. On the other hand,

in the light of the fact that experimental hints could have piled up by now in favour of

models predicting such correlations, but they have not so far, we do not consider the case in

which correlations are absent to be less motivated. Having said that, the principle can be

applied (though in a more model-dependent way) to theories predicting correlations among

matrix entries as well, by simply expressing the relevant physical quantities in terms of the

independent parameters of the theory.

In the neutrino sector, the stability assumption is most powerful when applied to the

solar squared mass difference, as its value is significantly smaller than the atmospheric

one, |∆m2
12/∆m

2
23| ≈ 0.03 � 1 (for a review on neutrino masses and mixings, including

experimental constraints and details on the notation commonly used, see [24]). As a

consequence, ∆m2
12 is potentially quite sensitive to variations of the neutrino mass matrix

entries. Following [18], the quantitative formulation of the stability of ∆m2
12 with respect

to variation of a matrix entry Mν
ij we will use is

∣∣∣∣∣∆(∆m2
12)

∆Mν
ij

Mν
ij

∆m2
12

∣∣∣∣∣ . 1 for |∆Mν
ij | � |Mν

ij |. (2.1)

In other words, when Mν
ij is varied by a small relative amount |∆Mν

ij/M
ν
ij |, the correspond-

ing relative variation of ∆m2
12 should not be much larger, |∆(∆m2

12)/∆m
2
12| . |∆Mν

ij/M
ν
ij |.

The definition is of course closely related to the definition of fine-tuning, or sensitivity pa-

rameter [25], which only differs in the size of the variation, here taken to be small but

finite. Such a difference makes our criterium apparently only slightly stronger than the

fine-tuning one, but plays an important role, as discussed in appendix C.

3 Consequences of the stability assumption

We start from the following proposition about stable Majorana neutrino textures.

1See also [19–23] for alternative approaches to natural mass matrices.
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A B C D


X

X

X




X

X




X X

X

X




X


IH 3 3 3 7

NH 3 7 7 3

SD 3 7 7 7

Table 1. The four stable neutrino textures in the ∆m2
12/∆m

2
23 → 0, ∆m2

23 6= 0 limit, up to

permutations of rows and columns. The non-zero entries are denoted by X. Also shown are the

neutrino patterns associated to each texture, inverted hierarchy (IH), normal hierarchy (NH), semi-

degeneracy (SD).

In the limit ∆m2
12/∆m

2
23 → 0, the neutrino mass matrix Mν satisfies eq. (2.1)

iff it is in one of the following two forms:
0 m 0

m 0 0

0 0 m3

 or


0 m m′

m 0 0

m′ 0 0

 , (3.1)

up to a permutation of the rows and columns.

The parameters in eq. (3.1) can be taken to be real and non-negative without loss of

generality. In order to ensure a non-zero ∆m2
23, one out of the two parameters in each

matrix must be non-zero. On the other hand, one of them can vanish, leading to the four

options in table 1.

The proof of the proposition makes use of two observations. The first one is that the

stability of ∆m2
12 implies the stability of the parameter

Π ≡ (∆m2
12∆m

2
23∆m

2
13)

2, (3.2)

i.e. it implies, ∣∣∣∣∣ ∆Π

∆Mν
ij

Mν
ij

Π

∣∣∣∣∣ . 1, (3.3)

as ∆m2
23, ∆m2

13 are never very sensitive to variations of the mass matrix entries. The

advantage of discussing the stability in terms of Π is that Π has a calculable polynomial

dependence on the matrix entries Mν
ij and their conjugate Mν∗

ij . As a consequence, the

variation ∆Π = Π(Mν
ij + ∆Mν

ij) − Π(Mν
ij) that appears in the stability condition is a

calculable polynomial in ∆Mν
ij and its conjugate. This is shown in appendix A.
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The second observation is that the stability condition in eq. (3.3) can be re-written as

|(Π(Mν
ij + ∆Mν

ij)−Π(Mν
ij))M

ν
ij | . |Π ∆Mν

ij |, which, in the ∆m2
12 → 0 limit, becomes

Mν
ij Π(Mν

ij + ∆Mν
ij) = 0. (3.4)

As Mν
ij Π(Mν

ij+∆Mν
ij) is a polynomial in ∆Mν

ij and its conjugate, its vanishing for all ∆Mν
ij

in a neighbourhood of zero (no matter how small) implies the vanishing of all coefficients,

in turn polynomials in Mν
ij , M

ν∗
ij . One then obtains simple algebraic conditions on the

entries of a stable Mν , which lead to eq. (3.1). This is also shown in appendix A, where

the discussion of the simple 2 × 2 case can also be found.

The textures in table 1 are well known and widely studied in the literature, see e.g. [26–

30]. Here we have for the first time rigorously associated them to the stability of the

small ∆m2
12, and shown how they can be obtained from the solution of simple algebraic

conditions. Moreover, as we will show in the following, we will obtain relevant information

on the size of the entries set to zero in eq. (3.1), and as a consequence experimental data

to come will provide significant information on the structure of the charged lepton mass

matrix as well.

The textures in table 1 are classified in terms of the neutrino mass pattern they cor-

respond to. Texture D corresponds to normal hierarchy, textures B and C to inverted

hierarchy, and texture A can correspond to both, depending on whether the 33 entry is

larger or smaller than the 12 entry (m3 ≷ m in eq. (3.1)). Note that it is possible to

continuously go from texture A to B and D, and from texture C to B, by making one of the

non-zero parameters small. Texture A (if the entries are of the same order of magnitude)

corresponds to semi-degenerate neutrinos (see section 4). Interestingly, future measure-

ments might lead to the unique identification of the neutrino texture. For example, if the

sum of neutrino masses turned out to be out of reach and the determination of the sign of

∆m2
23 pointed at a normal ordering, that would select texture D. If the sum of neutrino

masses will end up to be in the range accessible by planned experiments, this will force

a semi-degenerate spectrum, and will select texture A. Let us discuss it in greater detail

the latter possibility. Most of the analysis in the next section applies to texture B as well.

However, experimental data alone does not allow to uniquely identify texture B. This is

because the latter corresponds to the same mass pattern as texture C, which however has

different implications for the lepton mixing matrices (see section 5).

4 Semi-degenerate neutrinos (case A)

The case of semi-degenerate neutrinos turns out to be particularly interesting because i) it

leads to quite specific forms of the lepton mass matrices and ii) it corresponds to a sum of

light neutrino masses mtot not much below the present experimental limit, perhaps within

the reach of possible future generation of experiments aiming at determining the absolute

neutrino masses (currently the strongest bound on the absolute neutrino mass scales comes

from cosmological probes [31], with significant improvements expected from a new genera-

tion of spectroscopic surveys and CMB experiments [32, 33]). As mentioned, most of the re-

sults we will obtain, specifically section 4.3, section 4.4, section 4.5, also apply to texture B.
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4.1 Definition

As mentioned, we call the light neutrino mass spectrum semi-degenerate2 when the two

neutrinos ν1 and ν2 are quasi-degenerate, and the third neutrino is neither hierarchically

larger or smaller than ν1,2, nor degenerate. Semi-degeneracy is compatible with both

normal and inverted hierarchy, depending as usual on whether the third neutrino is heavier

or lighter than the other two.

Figure 1 shows that in a significant range below the present bound on mtot, here taken

to be mtot < 0.23 eV [24], corresponding to the right edge of the plot, the neutrino spectrum

is indeed semi-degenerate, with

m2
1 ≈ m2

2 ≈ m2 ≡ m2
1 +m2

2

2
, m ∼ m3, (4.1)

or equivalently

ε2 ≡ ∆m2
12

2m2
� 1, k2 ≡ |m

2 −m2
3|

mm3
= O (1) . (4.2)

As a consequence,

Π = (∆m2
12∆m

2
23∆m

2
13)

2 ≈ (∆m2
12)

2(m2 −m2
3)

4. (4.3)

4.2 Stability

Suppose that mtot is found to lie in the measurable range below the present bound and

consequently the light neutrinos are semi-degenerate. Then we know the form of the light

neutrino mass matrix, if stable. In the limit in which we neglect ∆m2
12 correction, it is in the

form A in eq. (3.1), with m ∼ m3, up to permutations of rows and columns. Permutations

that can be neglected, as we can always bring Mν in the form A of table 1 by properly

numbering the three lepton doublets. On top of that, we can use the stability condition to

infer the form of Mν in the realistic case in which ∆m2
12 is small but not zero. As shown

in appendix B,

Mν =


0 m 0

m 0 0

0 0 m3

+ ∆Mν , |∆Mν | .


ε2m 0 kεm

0 ε2m kεm

kεm kεm 0

 , (4.4)

where ε, k are defined in eq. (4.2). As discussed in appendix B, similar bounds apply to

the case of texture B, in which m3 = 0.

4.3 Neutrino contribution to the PMNS matrix

The above result determines the natural values of the contribution of the neutrino sector

to the PMNS matrix, with significant implications for the structure of the charged lepton

sector. A perturbative diagonalization of Mν in eq. (4.4) yields

Mν = UTν M
diag
ν Uν , Uν = Diag(1, i, 1)∗R12

(π
4
−∆

)−1
U ′Ψν , |∆| . ε2 (4.5)

2Sometimes called “partially degenerate” [34], although this terminology is sometimes used with different

meanings.
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Figure 1. Neutrino masses mν
i and the degeneracy parameters as defined in eq. (4.2) in terms of

the lightest neutrino mass, for normal and inverted ordering. The vertical line on the right-hand

side denotes the current upper bound on the neutrino mass scale [24], the gray shaded region on

the left indicates the violation of the semi-degeneracy condition, i.e. k > O(1).

where the crucial factor is the 12 rotation R12 by an angle that differs from π/4 by only

O
(
ε2
)

or less. The factor i is necessary to obtain Mdiag
ν > 0, and Ψν is a diagonal matrix

of phases. Finally U ′ = 1 + O (ε) is a relatively small correction obtained by combining

two unitary transformations in the 13 and 23 blocks. The eigenvalues in Mdiag
ν are ordered

in the standard way.

Eq. (4.5) shows that the diagonalization of the neutrino mass matrix provides an

12 angle very close to π/2. Therefore, while the neutrino sector provides the leading

contribution to the solar mixing angle θ12, it does not account for the observed deviation

of θ12 from π/4. While the central value of the observed deviation is, according to [24],
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ε2 ε k FTmin

NH 0.0071 0.084 0.62 60

IH 0.0054 0.074 0.65 80

Table 2. Numerical values of the quantities defined in eq. (4.2) in the semi-degenerate regime,

for mtot = 0.23 eV, and normal (NH) and inverted (IH) hierarchy. Also shown is the minimal

fine-tuning required to obtain a deviation from π/4 as large as π/4− θ12 in eq. (4.5).

π/4 − θ12 ≈ 0.2, eq. (4.5) alone would give π/4 − θ12 = ∆ . O
(
ε2
)
. Figure 1 and the

numerical values of ε2 in table 2 show that this is far from being enough.

We can reverse the argument and estimate how unstable the neutrino mass matrix

would be in order for the deviation of the 12 rotation angle to be ∆ = π/4− θ12. For that,

it is sufficient to consider the 12 block of Mν , which, up to a irrelevant constant, is the form(
a 1

1 b

)
, (4.6)

with a, b complex. The stability of ∆m2
12 requires |a|, |b| . ε2. On the other hand, the

relation

|a|+ |b| = 2
|a+ b∗|
|a| − |b|

tan(2∆) ≥ 2 tan(2∆) ≈ 0.8 (4.7)

forces |a|+ |b| � 2ε2. This requires a fine-tuning, because at the same time |a+ b∗| needs

to be small in order to keep ε2 = ∆m2
12/(2m

2) small, as

|a+ b∗| = cos(2∆)ε2
(

1 +
|a|2 + |b|2

2

)
. (4.8)

In other words, a and −b∗ must be fine-tuned to be approximately the same, with the size

of their difference, |a + b∗|, much smaller than |a| ≈ |b| ≈ (|a| + |b|)/2. Defining then the

fine-tuning to be given by FT = [(|a|+ |b|)/2]/|a+ b∗|, we have

FT ≥ tan(2∆)

cos(2∆)

2m2

∆m2
12

1

1 + |a|2+|b|2
2

∼ tan(2∆)

cos(2∆)

2m2

∆m2
12

∼ 1

ε2
. (4.9)

Numerically, the required minimum fine-tuning turns out to be quite large, as shown in

table 2 and in figure 2. Strictly speaking, the above formulas hold in the regime |a|, |b| . 1.

When |a|, |b| � 1, the analysis is different, but the outcome is similar.

In summary, the neutrino contribution to the solar mixing angle is expected to be

very close to π/4. The deviation of θ12 from π/4, as well as the large value of the atmo-

spheric angle θ23, must therefore originate in the charged lepton sector. This has strong

implications on its structure, as we will see now.

4.4 Charged leptons

As we have seen in the previous subsection, a semi-degenerate neutrino spectrum requires

the measured deviation of θ12 from π/4 and θ23 to originate mostly from the charged lepton

– 8 –
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Figure 2. Minimal fine-tuning needed to obtain a deviation from π/4 as large as π/4 − θ12 in

eq. (4.5).

sector. Following [18], in this subsection we show that i) this is possible and compatible

with the stability of the charged lepton sector, ii) the deviation of θ12 from π/4 and the size

θ13 turn out to be essentially independent, and iii) the charged lepton mass matrix needs

to take quite a specific form. Our approach therefore provides several pieces of the lepton

flavour puzzle, as the neutrino and charged lepton mass matrices are a direct emanation

of the physics from which lepton flavour originates.

The charged lepton mass matrix, in particular its last and leading row, can be recon-

structed from

ME = UTecM
diag
E Ue, (4.10)

as Mdiag
E = Diag(me,mµ,mτ ) is known, Ue can be obtained from Ue = UUν , with U

denoting the PMNS matrix. Here U and Uν are now known (up to phases) from data

and eq. (4.5) respectively, and Uec turns out to be constrained by stability. In order to

reconstruct ME from eq. (4.10), let us start with obtaining Ue.

4.4.1 Ue

In order to obtain Ue from Ue = UUν , it is convenient to write the PMNS matrix U using

the parameterisation in [20, 35] (see also [36]).

U = Φ̂eR12(θ
′
12)


1

e−iφ

1

R23(θ̂23)R12(θ̂12)Φ̂ν , (4.11)

where Φ̂ν = Diag(1, eiα̂, eiβ̂) contains the Majorana phases and Φ̂e is an unphysical diagonal

matrices of phases. In this parameterisation, θ̂23, θ̂12 are close to the standard PMNS

parameters θ23, θ12 [24] respectively, while θ′12 mainly determines the θ13 angle (and φ the

CP-violating phase δ):

tan θ12 = tan θ̂12

∣∣∣∣∣1+e−iφ tan θ′12 cos θ̂23/ tan θ̂12

1−eiφ tan θ′12 tan θ̂12 cos θ̂23

∣∣∣∣∣ sin δ = sinφ
sin 2θ̂12
sin 2θ12

,

– 9 –
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sin θ13 = sin θ′12 sin θ̂23 ei(α−β) = ei(α̂−β̂) Ph(1− tan θ′12 tan θ̂12 cos θ̂23e
iφ) , (4.12)

tan θ23 = tan θ̂23 cos θ′12 eiβ = eiβ̂ Ph(1 + tan θ′12/ tan θ̂12 cos θ̂23e
−iφ) .

Eq. (4.12) also shows that the the “Dirac” phases φ and δ, as well as the Majorana phases

α̂, β̂ and the corresponding ones in the standard parameterisation, α, β [37], are also

relatively close. A numerical fit of the parameters θ̂23, θ̂12, θ
′
12, φ based on the updated

constraints in [38] is shown in figure 3.3

We can now combine U and Uν to obtain Ue. We will neglect here the . ε contributions

from U ′ in eq. (4.5), as these turn out to be subdominant in the vast part of the parameter

space (a notable exception is when these contributions saturate the naturalness bound and

cancel the PMNS contribution to θe12, in which case some of the bounds quoted in this sec-

tion can be avoided, see appendix D for details). Ue turns out to be in the same form as U ,

Ue = ΦeR12(θ
′
12)


1

e−iφe

1

R23(θ̂23)R12(θ
e
12)Ψe, (4.13)

where Φe, Ψe are again irrelevant diagonal matrices of phases. Note that Ue is determined

by the PMNS angles θ′12 and θ̂23, and by the angle θe12, which is the result of combining

the PMNS rotation θ̂12 and the π/4 neutrino rotation. In the absence of phases, we would

have θe = π/4 ± θ̂12. Because the combination of the two rotations does involve phases,

we have instead
π

4
− θ̂12 ≤ θe12 ≤

π

4
+ θ̂12. (4.14)

The precise value of θe12 in the above interval (and the phase φe) is known if the Dirac and

the Majorana phases (φ, α̂, β̂) are,

tan θe12 =

∣∣∣∣∣ 1− eiξ tan θ̂12

1 + e−iξ tan θ̂12

∣∣∣∣∣ , eiξ = ei(α̂−π/2). (4.15)

For completeness, the phase φe is given by

eiφe = −ei(φ−ξ) Ph

(
1− eiξ tan θ̂12

1 + e−iξ tan θ̂12

)
. (4.16)

From the phenomenological point of view, it is important to note that there is at

present a 2σ preference for θ̂12 to be different from π/4 (corresponding to the vertical

dashed lines in plots (b,d)), which implies θe12 6= 0, π/2 for any value of the phases. In order

to strengthen this conclusion, a better experimental determination of θ̂12, i.e. |U32/U31|, or

δ in the standard parameterisation, is needed.

3Our φ differs from that of [39] by a sign. Eqs. (4.12) determine δ up to a twofold ambiguity. A full

formula is

eiδ tan θ12 = eiφ
tan θ̂12 + e−iφ tan θ′12 cos θ̂23

1− eiφ tan θ̂12 tan θ′12 cos θ̂23
.
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Normal Ordering

(a)
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)

(b)
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Inverted Ordering

(c)
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Figure 3. 68%, 95%, and 99.7% confidence level contours in the (sin θ′12, sin θ̂23) (a,c) and

(sin θ̂12, φ) (b,d) planes. We construct the likelihood function using the results of the recent global

fit of neutrino oscillation data from ref. [38] for normal ordering (upper row) and inverted ordering

(lower row) of neutrino masses. In plots (a,c) we use only the constraints on sin2 θ13 and sin2 θ23.

In plots (b,d) we include also the constraints on sin2 θ12 and δ, and we marginalize over sin θ′12 and

sin θ̂23. The dashed line indicates a value of θ̂12 = π/4.
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From a model-building point of view, a relevant remark concerns the expected size of

θe12. While in principle θe12 can be anywhere in the range in eq. (4.15), we argue that simple

naturalness considerations mildly favour the lower end of that interval, which in turn has

implications for the value of the Majorana phases. Let us first remind that θ̂12, and the

PMNS matrix in general, is a derived quantity, obtained by combining the charged lepton

and neutrino rotations θe12 and π/4, directly related to the underlying mass matrices. What

we are doing here is inverting that relation and reconstructing θe12 in terms of θ̂12 and π/4.

Now, θ̂12 is relatively close to π/4, the neutrino contribution to it. If θ̂12 turned out to

be very close to π/4, this would suggest that the charged lepton correction θe12 to π/4 is

small, θe12 ≈ 04 (although, by finely adjusting phases, θ̂12 ≈ π/4 could also be obtained

for θe12 = π/4) and eiξ ≈ 1. The present experimental information suggests that θ̂12 is

relatively close to π/4, but not extremely close. Still, such a closeness might suggest that

θe12 lies near the lower bound of the interval in eq. (4.14) and that α̂ = O (π/2). Again, a

better experimental determination of θ̂12 would be welcome to assess the size of π/4− θ̂12.
The relation eiξ ≈ 1, if taken seriously, would lead to a prediction for one of the Majo-

rana phases, α̂ ≈ π/2. This in turn would have interesting consequences for the mass pa-

rameter of neutrinoless double-β decay m0νββ ≡ |
∑
U2
eimi|. In the semi-degenerate regime,

neglecting O
(
θ213
)

effects, and approximating α ≈ α̂, the only phase entering m0νββ is α̂,

m0νββ ≈ m | cos2 θ12 + e2iα̂ sin2 θ12|. (4.17)

In the semi-degenerate regime, one has therefore an experimentally accessible value of

m0νββ = O (m), but the α̂ ≈ π/2 relation implies a partial cancellation between the first

two terms in m0νββ , forcing this parameter towards the lower edge of the allowed band

m0νββ ≈ m cos 2θ12. (4.18)

This is demonstrated in figure 4, where we show the predictions for m0νββ in terms of the

lightest neutrino mass for both normal and inverted hierarchy. The color-coding refers to

different values of α̂ = {0, π/4, π/2}, where the green band denotes our preferred value of

α̂ = π/2. The solid lines correspond to fixing the mixing angles and mass splittings to their

best-fit values according to [38] while varying the three phases α, β, δ in the PMNS matrix

(subject to the constraint on α̂). The dashed lines refer to the 3σ contour, where we have

constructed the χ2 function based on the distributions shown in [38] for θ12, θ13, θ23, δ,∆m
2
12

and ∆m2
23. As in figure 3, we neglect any cross-correlations between these parameters. We

note that restricting the Majorana phase α̂, even while all the other phases are uncon-

strained, significantly reduces the uncertainty on m0νββ . In addition, the blue shaded

regions in figure 4 denote the current 3σ bounds on m0νββ [40] and on the sum of neu-

trino masses as constrained by cosmological probes [31], respectively (see [41] for a recent

comprehensive review). The grey shaded region on the lefthand side indicates the region

disfavoured by the requirement of semi-degeneracy, k & O(1). The remaining allowed win-

dow will be probed in a variety of future experiments: (near) future neutrinoless double-β

4Or θe12 ≈ π/2. The two cases are however equivalent, as an exchange of the labeling of the first two

lepton doublets, l1 ↔ l2, shows.
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Figure 4. Value of m0νββ for different values of the PMNS Majorana phase α̂: α̂ = π/2 (green,

preferred value), α̂ = π/4 (orange), α̂ = 0 (red). The blue shaded regions on the top and righthand

side of the plot denote current experimental bounds, the grey shaded region indicates the mass

range disfavoured by the requirement of semi-degeneracy, see also figure 1.

decay experiments are expected to reach a sensitivity for m0νββ of O(0.1 eV) or possibly

even O(0.01 eV) [41] while cosmological bounds on the sum of neutrino masses are expected

to improve with future CMB missions and with upcoming spectroscopic surveys (such as

BOSS, DESI and EUCLID), reducing the 1σ uncertainty on mtot to O(10 meV) [32, 33].

It should be noted that cosmological bounds on the neutrino mass mentioned above are

based on the assumption of ΛCDM cosmology, whereas the tritium decay experiment KA-

TRIN [42] is expected to lower the bound on the absolute neutrino mass under laboratory

conditions from the current ∼ 2 eV [43, 44] to about 0.35 eV.

4.4.2 ME

We can now reconstruct the charged lepton mass matrix, in particular its leading rows, from

ME = UTecM
diag
E Ue. The previous formula and what we have learned about Ue force at least

two (more likely three) large O (mτ ) entries in the last row. Under this condition, the stabil-

ity constraints on the charged lepton mass force the third row of |ME | to be fully determined

by the PMNS parameters, up to corrections of relative order O
(
m2
µ/m

2
τ

)
= O (0.003) [24],

|ME
3i | ≈ |U e3i|mτ = (se12ŝ23, c

e
12ŝ23, ĉ23)mτ , (4.19)

where θe12 is related to the PMNS parameters by eq. (4.15) and the ranges of the PMNS

parameters θ̂12, θ̂23 are shown in figure 3. The range in eq. (4.14), assuming without loss

of generality tan θe12 ≤ 1, and using the present central values of the PMNS parameters,

becomes

0.13 ≤ tan θe12 ≤ 1, (4.20)

with tan θe12 = 0 disfavoured at 2σ (and a possible preference for values around the lower

bound from the naturalness considerations in the previous subsection). This means that
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ME
31 = 0 is also disfavoured and |ME

31| & 0.13mτ is preferred. Note that this preference for

tanθe12 6= 0 may however fade away for specific values of the . ε contributions to lepton

mixing from U ′ in eq. (4.5), cf. appendix D.

The stability of the charged lepton masses also provides information on the first two

rows of ME . Denoting te ≡ tan θe12 and t′ ≡ tan θ′12, we can show that there exists a t, with

t′ ≤ t ≤ max(t′, te), (4.21)

such that

|ME | =


. me . me min

(
1

t
,

1

te

)
.
me

t

. tmµ . mµ min

(
1,
t

te

)
∼ mµ

∼ temτ ∼ mτ ∼ mτ


P23,

t′ ≤ t ≤ max(t′, te)

0.13 . te ≤ 1

t′ ≈ 0.22

, (4.22)

where we have used our best fits for t′ = tan θ′12 and for the lower bound of te. P23 repre-

sents a permutation matrix that is either the identity or exchanges the last two columns.

Note that the above results improve on those in [18], where the range of t (there called

1/k) was looser and the constraints on ME milder. As a byproduct, we also obtain stability

bounds on Uec ,

|Uec | ≈


1 .

me

mµt
.

me

mτ t

.
me

mµt
1 .

mµ

mτ

.
me

mτ t
.
mµ

mτ
1


, (4.23)

which will be used in the next subsection. Eqs. (4.22), (4.23) are proven in appendix D.

In summary, with no theoretical assumption but the stability of the small ∆m2
12

squared mass difference and of the electron and muon mass, data leads us in the case of semi-

degenerate neutrinos to a unique leading order texture for the charged lepton mass matrices

Mν =


X

X

X

+ smaller, ME =


X? X X

+ smaller, (4.24)

which represents a model-independent handle on the origin of lepton flavour. One can for

example ask in full generality the question whether the above texture, in the limit of van-

ishing corrections, can be obtained from the symmetric limit of a generic flavour symmetry

acting (possibly independently) on the lepton fields. It is not difficult to show that this is

not the case [45].

4.5 Compatibility with SU(5)

In SU(5), the matrix Uec is related to UTd , where Ud is the down quark contribution to

the CKM matrix V , V = UuU
†
d . In the unbroken SU(5) limit, Uec = UTd , but SU(5)
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breaking effects can introduce differences, governed by SU(5) Clebsh factors, typically of

order one [35]. Stability in the quark sector suggests that V ≈ U †d , and the absence of

cancellations in the determination of the CKM matrix requires that the Ud angles are not

much larger than the CKM ones.

Let us consider the case in which V ≈ U †d . We can then compare |Ud12| ≈ sin θC ≈ 0.22,

where θC is the Cabibbo angle, with its SU(5) counterpart |U ec21 | . me/mµ/t ≤ me/mµ/t
′ ∼

0.02. Clearly, an SU(5) realisation of the stable semi-degeneracy textures studied in the

previous subsections requires quite important Clebsch factors. The simplest possibility is

the following

ME =


C1τ C2 C3

B1τ B2 B3

A1τ A2 A3

 , MT
D =


3C1τ 3C2 3C3

B1τ/3 B2/3 B3/3

A1τ A2 A3

 , (4.25)

with Ai � Bi � Ci and τ ∼ t′ ≈ 0.2. Such textures give in first approximation mτ ≈ mb,

mµ ≈ 3ms, me ≈ md/3 at the unification scale, in reasonable agreement with data, and

|U ec21 | ≈ B/C ≈ sin θC/9, in agreement with the numerical figures above. The fact that t′

happens to be close to the Cabibbo angle implies that |MD
12| ≈ |MD

21| in eq. (4.25).

5 Hierarchical neutrinos (cases B, C, D)

Let us now consider the situation when we drop the requirement of a semi-degenerate

neutrino mass spectrum, i.e. cases B, C and D in table 1. As discussed, case B gives the

same results for Uν , Ue, and ME as case A. In case C, the corresponding neutrino mixing

matrix Uν is at leading order in ε given by

Uν = Diag(1, i, 1)R12(π/4)R23(θ
B
23)ΦB , (5.1)

with sin(θB23) = 1/
√

1 + |Mν
12/M

ν
13|2 and ΦB a diagonal matrix of phases. Constructing

Ue = UUν , we find that, contrary to the semi-degenerate case discussed above, both the

U e13 and U e31 elements are no longer bounded from below. This significantly weakens the

constraints arising from the charged lepton sector, in fact this is just the situation discussed

in appendix D in the case that the O(ε) corrections in U ′ of eq. (4.5) cancel the O(t′, te)

contributions in U e31,13, cf. eqs. (D.11) and (D.12). The constraints on ME and Uec then

relax to eqs. (D.13) and (D.14).

Finally in case D, the leading order contribution to Uν is a rotation in the 12-block,

whose size (set by the subleading contributions to Mν) is a free parameter. Constructing

Ue = UUν and comparing to the semi-degenerate case A, this implies that the parameter

θe12 is now no longer constrained. This turns out to only mildly weaken the bounds on the

charged lepton sector.

6 Conclusions

We considered a bottom-up approach to lepton flavour based on a simple and motivated

hypothesis, the stability of (small) physical quantities with respect to the variations of indi-
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vidual matrix elements, assumed to correspond to independent parameters of an underlying

flavour theory.

The technical tools gathered in the appendices allow to translate such an hypothesis

into a set of algebraic conditions on the matrix entries. When applied to the stability of the

small solar squared mass difference ∆m2
12, those conditions identify, at the leading order in

∆m2
12, a set of only four possible stable textures for the neutrino mass matrix, see table 1.

While those textures have been previously studied, we have for the first time rigorously

associated them to the stability of ∆m2
12, and obtained them from the solution of simple

algebraic conditions. More important, the stability hypothesis allows to set bounds on the

size of the subleading entries, and to draw consequences for the structure of the charged

lepton mass matrix.

The four textures are characterised by their neutrino mass pattern. Interestingly, two

of them correspond to a specific mass pattern: texture D corresponds to a third neutrino

hierarchically heavier than the other two and texture A corresponds to what we call a semi-

degenerate neutrino spectrum, i.e. to two quasi degenerate neutrinos and a third neutrino

neither hierarchically larger nor smaller than the other two (a spectrum compatible with

both normal and inverted ordering, depending on whether the third neutrino is heavier or

lighter). Therefore determining the neutrino spectrum might allow to uniquely identify the

neutrino mass texture. The semi-degenerate pattern is particularly interesting both from

the experimental and theoretical points of view: it corresponds to an overall neutrino mass

scale not much below the present experimental limit, perhaps within the reach of future

experiments aiming at determining the absolute neutrino mass scale; and it leads, under

the stability hypothesis, to quite a specific form of both the neutrino and charged lepton

mass matrices. We therefore mostly concentrated on the semi-degenerate case. However,

most of the results we obtained also hold in the case of texture B.

The neutrino contribution Uν to the PMNS matrix U = UeU
†
ν is then precisely pre-

dicted, up to phase rotations, by the stability condition. In particular, Uν provides an

almost maximal contribution to the solar mixing angle, with a deviation predicted by sta-

bility to be . 0.01. The latter can hardly account for the deviation from maximal of the

solar mixing angle, π/4− θ12 ≈ 0.2, unless a O(50–100) fine-tuning is accepted.

With Uν determined by stability and U largely known from the experiment, the left-

handed charged lepton contribution to the PMNS matrix Ue can be reconstructed from

Ue = UUν , with a precision mostly limited by unknown relative phases entering the prod-

uct. In turn, when the stability principle is applied to the charged lepton sector, Ue largely

determines both the charged lepton mass matrix and the right-handed mixing Uec . There-

fore, using no theoretical assumption but the stability of the small physical parameters, we

are lead in the case of semi-degenerate neutrinos to a well-defined structure for the lepton

mass matrices. Interesting features of such a structure are i) the atmospheric angle θ23
and the deviation of the solar angle θ12 from π/4 are provided by the charged lepton mass

matrix in a natural (stable) way; ii) the deviation of θ12 from π/4 and the size of θ13 turn

out to be essentially independent.

The information obtained on Uec is particularly useful in the context of SU(5) unifica-

tion, where Uec is related to the down quark mixing by Clebsch factors, here constrained
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non-trivially by stability. We provided a simple example of choice of those factors compat-

ible with stability and leading in first approximation to the relations mτ ≈ mb, mµ ≈ 3ms,

me ≈ md/3 at the unification scale, in reasonable agreement with data.

A naturalness argument can also be applied to the neutrino Majorana phases, leading

to a mild preference for the Majorana phase α to be close to π/2. In turn, this has

interesting consequences for the mass parameter of neutrinoless double-β decay m0νββ . In

general, the semi-degenerate regime is associated to a large overall neutrino mass scale,

which is known to correspond to a experimentally favourable range of m0νββ . The above

(mild) prejudice on the Majorana phases forces m0νββ towards the lower edge of the allowed

band, corresponding to m0νββ ≈ m cos 2θ12.

A few final remarks. The above considerations would greatly benefit from a better

experimental determination of |U32/U31|, or equivalently of the Dirac phase δ, in the stan-

dard parameterisation of the PMNS matrix. Moreover, while we here considered the case in

which the mass matrix entries correspond to independent fundamental parameters, the re-

sults can be easily generalised to the case in which they are not independent. This would be

the case for example if a non-abelian symmetry correlated different matrix entries. Finally,

as the neutrino and charged lepton mass matrices are a direct emanation of the physics

from which lepton flavour originates, the approach we illustrated may provide pieces of the

lepton flavour puzzle, possibly relevant for a bottom-up investigation of the origin of flavour.
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A The stability condition for ∆m2
12 = 0

In this appendix we show how the stability condition leads to simple algebraic conditions

on the neutrino mass matrix and in turn to the textures in eq. (3.1).

Let us first consider the 2 × 2 Majorana case as an illustration. Let M be a 2 × 2

symmetric complex mass matrix.5 The physical masses can be obtained as the eigenvalues

of M †M , i.e. as the solution of a simple quadratic equation:

m2
1,2 = m2 ±

√
Π

2
, (A.1)

5For easier readability, we will suppress the index ν on the neutrino mass matrix and its eigenvalues in

the appendices, M ≡Mν and mi ≡ mν
i .
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where
2m2 = m2

1 +m2
2 = |M11|2 + 2|M12|2 + |M22|2

Π = (m2
1 −m2

2)
2 = (|M11|2 − |M22|2)2 + 4|M11M

∗
12 +M12M

∗
22|2.

(A.2)

This shows that the discriminant Π = (m2
1−m2

2)
2 can be expressed as a simple polynomial

in Mij and M∗ij . Let us now recover the stability condition in the ∆m2
12 → 0, or Π → 0

limit, as in eq. (3.4). Stability with respect to variations of the M11 element requires

M11((|M11 + ∆M11|2 − |M22|2)2 + 4|M11M
∗
12 + ∆M11M

∗
12 +M12M

∗
22|2) = 0 (A.3)

for ∆M11 in a neighbourhood of zero. As the expression on the left-hand side above is

a polynomial in ∆M11 and ∆M∗11, this requires the coefficient of each (∆M11)
n(∆M∗11)

m

term (in turn polynomials in Mij , M
∗
ij) to vanish. The coefficient of the highest term

(n = m = 2) is M11, hence M11 = 0. Analogously, the highest term in the M22 stability

condition forces M22 = 0. The vanishing of M11 and M22 is then enough to ensure stability,

as Mij Π(Mij + ∆Mij) then vanishes identically for all ij = 11, 22, 12. The only texture in

which a small ∆m2
12 is stable is therefore, in the ∆m2

12 → 0 limit,

M = m

(
0 1

1 0

)
. (A.4)

The fact that the previous texture leads, when perturbed, to a small but stable ∆m2
12

is well known. A precise definition of what “stable” means was missing however. Here

we have provided such a definition and proven that the above texture is the only stable

one. Note that the result is not completely trivial. Had we used the weaker form of the

stability condition in which eq. (3.3) is required to hold only for infinitesimal variations

of the matrix entries, we would have obtained a different, unsatisfactory result, as such a

weaker form is not enough to control the stability. In fact, it is easy to see that any 2 × 2

matrix with M11M
∗
12 + M12M

∗
22 (if M12 6= 0) or |M11| = |M22| (if M12 = 0) satisfies the

weaker condition. For example

M = m

(
1 0

0 1

)
(A.5)

does. On the other hand, as we will see in appendix C, ∆m2
12 is unstable in this case,

and the infinitesimal variation misses the instability because the latter develops when the

relative variation is small, but larger than (∆m2
12/(2m

2))2.

Let us now get to the 3×3 case and again assume for definiteness that M is symmetric

(Majorana). Let us first show that the quantity Π in eq. (3.2) is indeed a polynomial in the

matrix entries and their conjugated and show how such a polynomial can be calculated.

The singular values mi ≥ 0, conventionally ordered, can be obtained from the eigen-

values m2
i of M †M . In turn, the latter eigenvalues solve the secular equation det(m213 −

M †M) = 0 for m2. The latter is a polynomial equation in m2, as

det(m213 −M †M) = m6 −Π1m
4 + Π2m

2 −Π3 = (m2 −m2
1)(m

2 −m2
2)(m

2 −m2
3) (A.6)
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where the coefficients Π1,2,3 are polynomials in Mij , M
∗
ij (whose form can be obtained from

eq. (A.6)) and in the eigenvalues m2
i

Π1 = m2
1 +m2

2 +m2
3, Π2 = m2

1m
2
2 +m2

2m
2
3 +m2

1m
2
3, Π3 = m2

1m
2
2m

2
3. (A.7)

The expressions for the solutions of the cubic equation (the eigenvalues m2
i ) in terms of its

coefficients Π1,2,3 are well known and involve the discriminant

Π ≡ 18 Π1Π2Π3 − 4 Π3
1Π3 + Π2

1Π
2
2 − 4 Π2

3 − 27 Π2
3, (A.8)

which, when expressed in terms of the eigenvalues m2
i through eqs. (A.7), becomes

Π = ((m2
1 −m2

2)(m
2
2 −m2

3)(m
2
3 −m2

1))
2. (A.9)

We therefore see that the combination of eigenvalues in the above equation can be written,

through eq. (A.8), as a polynomial in Mij , M
∗
ij . The explicit expression is cumbersome and

will not be reproduced here. The quantity Π can also be obtained (up to a constant) as the

lowest order symmetric function of the eigenvalues m2
i that vanishes if any two eigenvalues

coincide.

Eq. (3.4) gives

0 = |Mij |Π(Mij + ∆Mij) =
∑
nm

|Mij |cnmij (Mij ,M
∗
ij)(∆Mij)

n(∆M∗ij)
m, (A.10)

for all ∆Mij in a neighbourhood of zero. Therefore, |Mij |cnmij (Mij ,M
∗
ij) = 0 for all n,m

and for each i, j. Starting with varying the the off-diagonal elements (ij = 12, 13, 23), an

explicit calculation of the leading order coefficients (n = m = 5) yields

|Mij | c55ij = 4|Mij |(|Mii|2 + |Mjj |2) → Mij =0 or Mii=Mjj =0 for ij=12, 13, 23.

(A.11)

This allows for 4 types of textures,
0 M12 0

M12 0 0

0 0 M33

,


0 M12 M13

M12 0 0

M13 0 0

,

M11 0 0

0 M22 0

0 0 M33

,


0 M12 M13

M12 0 M23

M13 M23 0

 (A.12)

and the ones obtained from permutations of rows and columns. Calculating the other coef-

ficients cnm (still for the variation with respect to the off-diagonal elements) and requiring

them to be zero eliminates the last texture.

Turning to the variation of the diagonal elements (ij = 11, 22, 33) and considering

again the leading order coefficients, we find

|Mii| c44ii = |Mii|(|Mjj |2 − |Mkk|2) → Mii = 0 or |Mjj | = |Mkk| , (A.13)

with ijk cyclic permuations of 123. The remaining textures thus are
0 M12 0

M12 0 0

0 0 M33

,


0 M12 M13

M12 0 0

M13 0 0

,


0 0 0

0 0 0

0 0 M33

,

M33e

iβ 0 0

0 M33e
iα 0

0 0 M33

 . (A.14)

– 19 –



J
H
E
P
0
6
(
2
0
1
6
)
0
3
1

The last texture has ∆m2
12 = 0 but also ∆m2

23 = 0 and should therefore be discarded as,

for ∆m2
23 = 0, ∆m2

12 = 0 is not equivalent to Π = 0. Both ∆m2
12 and ∆m2

23 are unstable

in this texture. The third texture can be obtained from the first one setting M12 = 0. In

order to keep a non zero ∆m2
23, one parameters in each of the first two textures must be

non-zero, while one is allowed to vanish. This leads to the results in eq. (3.1) and in table 1.

B Stability constraints for finite ∆m2
12 in texture A

In the realistic case in which ∆m2
12 is small but not zero, and the neutrino mass spectrum

is semi-degenerate, the stability requirement forces the neutrino mass matrix M to be close

to the first case in eq. (A.14),

M =


M11 m M13

m M22 M23

M13 M23 m3

 . (B.1)

where we have assumed a phase convention for the lepton fields in which the dominant 12

and 33 entries m and m3 to be real and positive. The remaining entries M11, M22, M13,

M23 represent small perturbations.

The eigenvalues of M †M can be obtained from a perturbative expansion in the small

entries:
m2

1 = m2 −m |M11 +M∗22|+ . . .

m2
2 = m2 +m |M11 +M∗22|+ . . .

m2
3 = m2

3 + . . . .

(B.2)

At leading order, this leads for m3 > m (m3 < m) to normal (inverted) hierarchy, with

∆m2
23 ≈ m2

3 −m2 and

∆m2
12 = 2m |M11 +M∗22|+ δ(∆m2

12), (B.3a)

δ(∆m2
12) = eiγ

mm3(M
∗2
13 +M2

23) + 2m2M23M
∗
13

m2 −m2
3

+ h.c. + higher orders, (B.3b)

where eiγ is the phase of M11 +M∗22.

We can now impose the stability constraint, eq. (2.1), to ∆m2
12. Let us begin from the

variation with respect to the 11 entry, M11 →M11 + δMeiθ (where δM > 0 and the phase

of the variation is factored out). For that, it is enough to use the first term in eq. (B.3a):

1 & max
θ

∣∣∣∣∆(∆m2
12)

δM

M11

∆m2
12

∣∣∣∣
≈ 2
|M11|m
∆m2

12

max
θ

∣∣∣∣ |M11 +M∗22 + δMeiθ| − |M11 +M∗22|
δM

∣∣∣∣ = 2
|M11|m
∆m2

12

, (B.4)

where we have used the fact that the stability inequality must hold for any value of the

phase θ. From eq. (B.4), and the analogous condition for 22 variations, we conclude that

|M11|, |M22| .
∆m2

12

2m
= ε2m. (B.5)
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The previous condition ensures that ∆m2
12 is stable in the leading order approximation.

The first contribution to ∆m2
12 in eq. (B.3), on the other hand, does not constrain the

13 and 23 entries. Let us then take into account the next to leading order correction in

eq. (B.3b) and recover the constraint on M13, M23. Let us consider first a variation of the

23 element, M23 →M23 + δMeiθ, which gives

1 & max
θ

∣∣∣∣∆(∆m2
12)

δM

M23

∆m2
12

∣∣∣∣
≈ |M23|m

∆m2
12(m

2 −m2
3)

max
θ

∣∣∣2(m3M23 +mM∗13)e
i(θ+φ) + δMm3e

i(2θ+φ) + h.c.
∣∣∣

≥ |M23|m
∆m2

12(m
2 −m2

3)
max [4|m3M23 +mM∗13|, 2 δMm3] . (B.6)

We therefore have 
2
|M23|m
∆m2

12

δMm3

|m2 −m2
3|

. 1,

2
|M23|m
∆m2

12

2|m3M23 +mM∗13|
|m2 −m2

3|
. 1,

(B.7)

for δM �M . Let us now show that the first equation implies

R ≡
(

2mm3|M23|2

∆m2
12|m2 −m2

3|

)1/2

. 1. (B.8)

If this was not the case, i.e. if R � 1, we could consider a variation of M23 of size δM =

|M23|/R� |M23|, for which we would have

2
|M23|m
∆m2

12

δMm3

|m2 −m2
3|

=
δM

|M23|
R2 = R� 1, (B.9)

in contradiction with the first condition in eq. (B.7). The stability constraint on M23 (and,

analogously, the one on M13) follows from eq. (B.8):

|M13|, |M23| .
(

∆m2
12

|m2 −m2
3|

2mm3

)1/2

= εkm (B.10)

Using this result, one also gets a bound on the product M13M23 from the second condition

in eq. (B.7):

|M13M23|1/2 . εk
√
mm3 ∼ εkm. (B.11)

In summary, the neutrino mass matrix is constrained by stability to be in the form in

eq. (4.4). We have explicitly checked that that is also a sufficient condition for stability.

Note that given the bounds eq. (B.5) and eq. (B.10), the two contributions in eq. (B.3a)

and (B.3b) turn out to be of the same order in ε. Using this information and rederiving the

above constraints order by order in ε confirms the bounds on the elements of Mν derived

in this section, proving the self-consistency of this analysis.

We close this appendix discussing how the above results change for texture B, i.e. when

m3 is set to zero. The bounds on the 11 and 22 elements of ∆M do not depend on m3
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and therefore do not change. The 33 element of ∆M , on the other hand, is now allowed

to be sizeable, as we know from the stability of texture A. On the other hand, a sizeable

33 element brings us back to texture A. We can therefore say that the 33 element of ∆M

is small by the very definition of texture B. Similar considerations hold for the 13 and

23 elements. While their product is still bounded (by ε2m2/2, see the second condition

in eq. (B.7)), the individual elements ∆M13 and ∆M23 are now allowed to be sizeable,

provided that the other one is correspondingly suppressed. However, a sizeable ∆M13 or

∆M23 brings us towards texture C. We can therefore again say that the 13 and 23 elements

of ∆M are small by the very definition of texture B. In the end, we get for texture B results

similar to those found for texture A, i.e. . ε2 deviations from π/4 for the 12 rotation and

. ε contributions in U ′ in eq. (4.4).

C Finite differences against infinitesimal variations

It is instructive to consider again the 2 × 2 case, which nicely shows why the infinitesimal

form of the stability condition is not enough to exclude the texture in eq. (A.5). Let us

add a small, off-diagonal element to that texture in order to generate a small ∆m2
12:

M = m

(
1 ε

ε 1

)
, (C.1)

with 0 < ε � 1 (not to be confused with the ε in eq. (4.2)). We then have 2ε ≈
∆m2

12/(2m
2) � 1. Let us now study the behaviour of Π = (∆m2

12)
26 with respect to

(real) variations of the matrix entries. When using infinitesimal variations we get∣∣∣∣ ∂Π

∂M11

M11

Π

∣∣∣∣ =

∣∣∣∣ ∂Π

∂M22

M22

Π

∣∣∣∣ = 1,

∣∣∣∣ ∂Π

∂M12

M12

Π

∣∣∣∣ = 2. (C.2)

The texture appears to be stable. But this is not the case. Let us consider now a variation

of the entries by a finite amount δ (1→ 1 + δ, or ε→ ε+ δ). We now have∣∣∣∣ ∆Π

∆M11

M11

Π

∣∣∣∣ =

∣∣∣∣ ∆Π

∆M22

M22

Π

∣∣∣∣ = 1 + δ

(
1

4
+

1

4ε2

)
+

δ2

4ε2
+

δ3

16ε2
,

∣∣∣∣ ∆Π

∆M12

M12

Π

∣∣∣∣ = 2 +
δ

ε
.

(C.3)

The infinitesimal limit is recovered when δ � 4ε2 � (∆m2
12/(2m

2))2. On the other hand,

when 4ε2 � δ � 1, the instability emerges,∣∣∣∣ ∆Π

∆M11

M11

Π

∣∣∣∣ ≈ δ

4ε2
� 1. (C.4)

A finite variation larger than the (square of the) small scale of the problem, (∆m2
12/(2m

2))2,

is necessary in order to see the instability. This is similar to what was found in [18] for

charged leptons.

6As in other cases, we consider (∆m2
12)2 instead of ∆m2

12 simply because Π has a polynomial expression

in the matrix entries that turns useful when computing finite variations.
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D Stability of the charged lepton mass matrix

In this appendix we prove the statements in eqs. (4.22), (4.23). We will make use of

Proposition 2 in [18]. According to which, the stability of ME is equivalent to

|ME
ihM

E
jk| . mµmτ for all i 6= j, h 6= k

|ME
1iM

E
2jM

E
3k| . memµmτ for all ijk permutations of 123.

(D.1)

We order the singlet leptons eci in such a way that |U ecii | ∼ 1 and denote

te = tan θe12, t′ = tan θ′12, tmax = max(te, t
′), tmin = min(te, t

′). (D.2)

According to eq. (4.19), the third row of ME is in the form (|ME
3i |) ∼ (temτ ,mτ ,mτ ).

Here we are neglecting the . ε contributions from U ′ in eq. (4.4), a point we will return to

in the second part of this appendix. Stability then requires |ME
2i | . mµ (same for for the

first row ME
1i). Then

mµ & |ME
23| = |U e

c

32mτU
e
33 +O (≤ mµ) |, (D.3)

together with |U e33| ∼ 1, implies |U ec32 | . mµ/mτ . Analogously, |U ec31 | . mµ/mτ . Using the

latter result and the explicit form of Ue in the expression ME
21 = U e

c

k2mkU
e
k1, one finds that

|ME
21| . tmaxmµ. Moreover, at least one out of |ME

22| and |ME
23| must be of order mµ. This

follows from

U e
c

22mµ = (U e33M
E
22 − U e32ME

23)/D +O (me) , (D.4)

and |U ec22 | ∼ 1, where D is the determinant of the 23 block of the matrix Ue, D =

e−iφece12c
′
12 − ĉ23s

e
12s
′
12 ≈ e−iφece12c

′
12 ∼ 1. In the following we will assume for defi-

niteness that |ME
23| ∼ mµ. The results for the case in which |ME

22| ∼ mµ can be ob-

tained by exchanging the last two columns of ME . This is the origin of the permutation

matrix P23 in eq. (4.22). All in all, the second line of ME must then be in the form

(|ME
2i |) = (. tmaxmµ,. mµ,∼ mµ).

Let us now consider the first row of ME . Eq. (D.1) requires |ME
11| . me, |ME

12| . me/te,

and inverting ME = UTecM
diag
E Ue we obtain

|U e∗11ME
11 + U e∗12M

E
12 + U e∗13M

E
13|/me = |U ec11 | ≤ 1, (D.5)

which forces |ME
13| . me/tmin. Therefore we have, for the first row of ME , (|ME

1i |) = (.
me,. me/te,. me/tmin). We can still improve on the above approximate bound. Using

me & |ME
11c

e
12 +ME

12s
e
12| = |mec

′
12U

ec

11 −mµs
′
12U

ec

21 | (D.6)

we get |U ec21 | . me/(mµt
′), and using

1 &
|ME

13M
E
21M

E
32 −ME

13M
E
22M

E
31|

memµmτ

≈
∣∣∣∣U ec22U ec33s′12ŝ23 [U ec31 ĉ23mτ

me
+ e−iφe ŝ23

(
U e

c

21c
′
12

mµ

me
+ U e

c

11s
′
12

)]∣∣∣∣ (D.7)
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we get |U ec31 | . me/(mτ t
′). Using the above bounds in the expressions ME

1j = U e
c

k1mkU
e
kj for

the matrix elements of the first row of ME we obtain the bounds |ME
12| . me/t

′, |ME
13| .

me/t
′ that, together with the previous ones, give (|ME

1i |) = (. me,. me/tmax,. me/t
′).

All in all we get the following stability bounds on the charged lepton mass matrix

|ME | =


. me . me/tmax . me/t

′

. mµtmax . mµ ∼ mµ

∼ mτ te ∼ mτ mτ

 , besides

|ME
12M

E
21| . memµ

|ME
13M

E
21| . memµ

|ME
13M

E
22| . memµ/te

. (D.8)

We can now show that the above bounds are equivalent to the existence of a t in the range

t′ ≤ t ≤ max(t′, te) satisfying the bounds in eq. (4.22). Clearly, if ME satisfies the bounds in

eq. (4.22), with t in the above range, then it also satisfies the bounds in eq. (D.8). In order to

show the the vice versa also holds, we observe that eq. (D.8) implies the following 9 bounds

t′,
|ME

21|
mµ

,
|ME

22|te
mµ

.
me

|ME
21|
,
me

|ME
13|
, tmax. (D.9)

It then suffices to choose t such that

t′ ≤ max

(
t′,
|ME

21|
mµ

,
|ME

22|te
mµ

)
. t . min

(
me

|ME
21|
,
me

|ME
13|
, tmax

)
≤ tmax (D.10)

(and to make sure that t′ ≤ t ≤ tmax, with no wiggles) in order to satisfy the bounds in

eq. (4.22).

Finally, eq. (4.23) follows from using the bounds in eq. (4.22) in the expression U e
c

ki =

(U ekj)
∗ME

ij /mk, obtained inverting ME = UTecM
diag
E Ue.

Now, let us return to the . ε contributions from the 13- and 23-rotations by angles

θν13 and θν23 in the neutrino sector, leading to . ε contributions in all entries of Ue. This

can affect the above results wherever we use the explicit form of Ue. Most importantly,

U e31 = sin(θ̂23) sin(θe12)− cos(θ̂23) ε13 , (D.11)

U e13 = ŝ23s
′
12 + c′12e

iφe(ĉ12ε− − iŝ12ε+)− ĉ23s′12(iĉ12ε+ + ŝ12ε−) , (D.12)

with ε13 = sin(θν13)e
−iϕν13 , ε+ = eiβ(sin(θν13)e

iϕν13 + sin(θν23)e
iϕν23)/

√
2, ε− =

eiα(sin(θν13)e
iϕν13 − sin(θν23)e

iϕν23)/
√

2 and |ε13|, |ε±| . ε. Hence, with ε ≤ 0.09 for

m1 > 0.05 eV, cancellations between the O(θν12) terms and the O(te, t
′) terms are pos-

sible. This implies that strictly speaking there is no lower bound on U e31, U
e
13, unlike the

case in which the ε13,± corrections can be neglected. On the other hand, a vanishing value

for |U e31,13| is not the generic case, but occurs only for specific parameter choices. In par-

ticular, the ε13,± corrections have to be sufficiently close to the upper bounds of eq. (4.4).

Still, if this is the case and the cancellation takes place, the bound on the first row of ME

is significantly weakened,

|ME | =


. me . mµ . mµ

. mµt
′
max . mµ ∼ mµ

� mτ ∼ mτ ∼ mτ

 . (D.13)
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with t′max = max(tmax, tan(θν13)). For Uec this implies

|Uec | =


∼ 1 < 1 . mµ/mτ

< 1 ∼ 1 . mµ/mτ

. mµ/mτ . mµ/mτ ≈ 1

 . (D.14)

In the main part of this paper, we focus on the situation in which this cancellation does

not occur - relevant for the vast part of the parameter space. This is however a special

situation to be kept in mind as it allows to evade some of the bounds imposed on the

structure of the charged lepton mass matrix and mixing.
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