18 research outputs found

    Bcl-2 protein family: Implications in vascular apoptosis and atherosclerosis

    Get PDF
    Apoptosis has been recognized as a central component in the pathogenesis of atherosclerosis, in addition to the other human pathologies such as cancer and diabetes. The pathophysiology of atherosclerosis is complex, involving both apoptosis and proliferation at different phases of its progression. Oxidative modification of lipids and inflammation differentially regulate the apoptotic and proliferative responses of vascular cells during progression of the atherosclerotic lesion. Bcl-2 proteins act as the major regulators of extrinsic and intrinsic apoptosis signalling pathways and more recently it has become evident that they mediate the apoptotic response of vascular cells in response to oxidation and inflammation either in a provocative or an inhibitory mode of action. Here we address Bcl-2 proteins as major therapeutic targets for the treatment of atherosclerosis and underscore the need for the novel preventive and therapeutic interventions against atherosclerosis, which should be designed in the light of molecular mechanisms regulating apoptosis of vascular cells in atherosclerotic lesions

    Frequency and clinical impact of CDKN2A/ARF/CDKN2B gene deletions as assessed by in-depth genetic analyses in adult T cell acute lymphoblastic leukemia

    Get PDF
    © The Author(s).Recurrent deletions of the CDKN2A/ARF/CDKN2B genes encoded at chromosome 9p21 have been described in both pediatric and adult acute lymphoblastic leukemia (ALL), but their prognostic value remains controversial, with limited data on adult T-ALL. Here, we investigated the presence of homozygous and heterozygous deletions of the CDKN2A/ARF and CDKN2B genes in 64 adult T-ALL patients enrolled in two consecutive trials from the Spanish PETHEMA group. Alterations in CDKN2A/ARF/CDKN2B were detected in 35/64 patients (55%). Most of them consisted of 9p21 losses involving homozygous deletions of the CDKNA/ARF gene (26/64), as confirmed by single nucleotide polymorphism (SNP) arrays and interphase fluorescence in situ hybridization (iFISH). Deletions involving the CDKN2A/ARF/CDKN2B locus correlated with a higher frequency of cortical T cell phenotype and a better clearance of minimal residual disease (MRD) after induction therapy. Moreover, the combination of an altered copy-number-value (CNV) involving the CDKN2A/ARF/CDKN2B gene locus and undetectable MRD (≀ 0.01%) values allowed the identification of a subset of T-ALL with better overall survival in the absence of hematopoietic stem cell transplantation.This project was supported by the AsociaciĂłn Española Contra el CĂĄncer, AECC (project ref.: GC16173697BIGA), by CERCA Program/Generalitat de Catalunya, the Catalan Government: 2014-SGR225 (GRE), Obra Social “La Caixa” and by Celgene Spain. E. GenescĂ  is the recipient of agrant from the Spanish Health Ministry (ISCIII, CA12/00468) and an unrestricted grant from Gilead.A. Gonzalez-Perez is supported by a Ramon y Cajal fellowship (RYC-2013-14554) of the Educational Ministry (Madrid, Spain). This work was also partially supported by FEDER funds from the ISCIII (PT13/0010/0026, CIBERONC (CB16/12/00284 and CB16/12/00400), Madrid, Spain)

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic

    Outcomes from elective colorectal cancer surgery during the SARS‐CoV‐2 pandemic

    Get PDF
    Aim This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic. Method This was an international cohort study of patients undergoing elective resection of colon or rectal cancer without preoperative suspicion of SARS-CoV-2. Centres entered data from their first recorded case of COVID-19 until 19 April 2020. The primary outcome was 30-day mortality. Secondary outcomes included anastomotic leak, postoperative SARS-CoV-2 and a comparison with prepandemic European Society of Coloproctology cohort data. Results From 2073 patients in 40 countries, 1.3% (27/2073) had a defunctioning stoma and 3.0% (63/2073) had an end stoma instead of an anastomosis only. Thirty-day mortality was 1.8% (38/2073), the incidence of postoperative SARS-CoV-2 was 3.8% (78/2073) and the anastomotic leak rate was 4.9% (86/1738). Mortality was lowest in patients without a leak or SARS-CoV-2 (14/1601, 0.9%) and highest in patients with both a leak and SARS-CoV-2 (5/13, 38.5%). Mortality was independently associated with anastomotic leak (adjusted odds ratio 6.01, 95% confidence interval 2.58–14.06), postoperative SARS-CoV-2 (16.90, 7.86–36.38), male sex (2.46, 1.01–5.93), age >70 years (2.87, 1.32–6.20) and advanced cancer stage (3.43, 1.16–10.21). Compared with prepandemic data, there were fewer anastomotic leaks (4.9% versus 7.7%) and an overall shorter length of stay (6 versus 7 days) but higher mortality (1.7% versus 1.1%). Conclusion Surgeons need to further mitigate against both SARS-CoV-2 and anastomotic leak when offering surgery during current and future COVID-19 waves based on patient, operative and organizational risks

    Evolution of genes and genomes on the Drosophila phylogeny

    No full text
    Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species
    corecore