41 research outputs found

    MCPH1: A novel case report and a review of the literature

    Get PDF
    Microcephaly primary hereditary (MCPH) is a congenital disease characterized by nonsyndromic reduction in brain size due to impaired neurogenesis, often associated with a variable degree of intellectual disability (ID). The genetic etiology of MCPH is heterogeneous and comprises more than 20 loci, nearly all following a recessive inheritance pattern. The first causative gene identified, MCPH1 or Microcephalin, encodes a centrosomal protein that modulates chromosome condensation and cell cycle progression. It is also involved in DNA damage response and telomere maintenance in the nucleus. Despite numerous studies on MCPH1 function, MCPH1-affected individuals are rare and the available clinical reports are not sufficient to define the natural history of the disease. Here, we present a novel patient with congenital microcephaly, ID, language delay, short stature, and other minor features such as strabismus. magnetic resonance imaging revealed ventriculomegaly, simplified gyral pattern in the frontal lobes, and a neuronal migration defect. Genetic testing detected a homozygous deletion of exons 1-8 of MCPH1. We compare the patients\u27 characteristics with a list of features from MCPH1 cases described in the literature, in an effort to provide additional clues for a comprehensive definition of disease presentation and evolution

    Creatine Transporter Defect Diagnosed by Proton NMR Spectroscopy in Males With Intellectual Disability

    Get PDF
    Creatine deficiency syndrome due to mutations in X-linked SLC6A8 gene results in nonspecific intellectual disability (ID). Diagnosis cannot be established on clinical grounds and is often based on the assessment of brain creatine levels by magnetic resonance spectroscopy (MRS). Considering high costs of MRS and necessity of sedation, this technique cannot be used as a first level-screening test. Likewise, gene test analysis is time consuming and not easily accessible to all laboratories. In this article feasibility of urine analysis (creatine/creatinine (Cr/Crn) ratio) performed by nuclear magnetic resonance (NMR) as a first level-screening test is explored. Before running a systematic selection of cases a preliminary study for further molecular analysis is shown. NMR urine spectra (n = 1,347) of male patients with an ID without a clinically recognizable syndrome were measured. On the basis of abnormal Cr/Crn ratio, three patients with the highest values were selected for molecular analysis. A confirmatory second urine test was positive in two patients and diagnosis was further confirmed by a decreased brain creatine level and by SLC6A8 gene analysis. A de novo mutation was identified in one. Another patient inherited a novel mutation from the mother who also has a mild ID. A repeat urine test was negative in the third patient and accordingly creatine level in the brain and SLC6A8 gene analysis both gave a normal result. We conclude that Cr/Crn ratio measured by NMR for male patients represents a rapid and useful first level screening test preceding molecular analysis. © 2011 Wiley-Liss, Inc

    Prenatal phenotyping: A community effort to enhance the Human Phenotype Ontology.

    Get PDF
    Technological advances in both genome sequencing and prenatal imaging are increasing our ability to accurately recognize and diagnose Mendelian conditions prenatally. Phenotype-driven early genetic diagnosis of fetal genetic disease can help to strategize treatment options and clinical preventive measures during the perinatal period, to plan in utero therapies, and to inform parental decision-making. Fetal phenotypes of genetic diseases are often unique and at present are not well understood; more comprehensive knowledge about prenatal phenotypes and computational resources have an enormous potential to improve diagnostics and translational research. The Human Phenotype Ontology (HPO) has been widely used to support diagnostics and translational research in human genetics. To better support prenatal usage, the HPO consortium conducted a series of workshops with a group of domain experts in a variety of medical specialties, diagnostic techniques, as well as diseases and phenotypes related to prenatal medicine, including perinatal pathology, musculoskeletal anomalies, neurology, medical genetics, hydrops fetalis, craniofacial malformations, cardiology, neonatal-perinatal medicine, fetal medicine, placental pathology, prenatal imaging, and bioinformatics. We expanded the representation of prenatal phenotypes in HPO by adding 95 new phenotype terms under the Abnormality of prenatal development or birth (HP:0001197) grouping term, and revised definitions, synonyms, and disease annotations for most of the 152 terms that existed before the beginning of this effort. The expansion of prenatal phenotypes in HPO will support phenotype-driven prenatal exome and genome sequencing for precision genetic diagnostics of rare diseases to support prenatal care

    Phenotype and genotype of 87 patients with Mowat-Wilson syndrome and recommendations for care

    Get PDF

    Phenotype and genotype of 87 patients with Mowat-Wilson syndrome and recommendations for care

    Get PDF

    Phenotype and genotype of 87 patients with Mowat-Wilson syndrome and recommendations for care

    Get PDF
    Mowat-Wilson syndrome (MWS) is a rare intellectual disability/multiple congenital anomalies syndrome caused by heterozygous mutation of the ZEB2 gene. It is generally underestimated because its rarity and phenotypic variability sometimes make it difficult to recognize. Here, we aimed to better delineate the phenotype, natural history, and genotype-phenotype correlations of MWS.MethodsIn a collaborative study, we analyzed clinical data for 87 patients with molecularly confirmed diagnosis. We described the prevalence of all clinical aspects, including attainment of neurodevelopmental milestones, and compared the data with the various types of underlying ZEB2 pathogenic variations.ResultsAll anthropometric, somatic, and behavioral features reported here outline a variable but highly consistent phenotype. By presenting the most comprehensive evaluation of MWS to date, we define its clinical evolution occurring with age and derive suggestions for patient management. Furthermore, we observe that its severity correlates with the kind of ZEB2 variation involved, ranging from ZEB2 locus deletions, associated with severe phenotypes, to rare nonmissense intragenic mutations predicted to preserve some ZEB2 protein functionality, accompanying milder clinical presentations.ConclusionKnowledge of the phenotypic spectrum of MWS and its correlation with the genotype will improve its detection rate and the prediction of its features, thus improving patient care.GENETICS in MEDICINE advance online publication, 4 January 2018; doi:10.1038/gim.2017.221

    Phenotype and genotype of 87 patients with Mowat–Wilson syndrome and recommendations for care

    Get PDF
    Purpose: Mowat–Wilson syndrome (MWS) is a rare intellectual disability/multiple congenital anomalies syndrome caused by heterozygous mutation of the ZEB2 gene. It is generally underestimated because its rarity and phenotypic variability sometimes make it difficult to recognize. Here, we aimed to better delineate the phenotype, natural history, and genotype–phenotype correlations of MWS. Methods: In a collaborative study, we analyzed clinical data for 87 patients with molecularly confirmed diagnosis. We described the prevalence of all clinical aspects, including attainment of neurodevelopmental milestones, and compared the data with the various types of underlying ZEB2 pathogenic variations. Results: All anthropometric, somatic, and behavioral features reported here outline a variable but highly consistent phenotype. By presenting the most comprehensive evaluati

    Clinical and Genetic Findings in a Series of Eight Families with Arthrogryposis

    No full text
    The term “arthrogryposis” is used to indicate multiple congenital contractures affecting two or more areas of the body. Arthrogryposis is the consequence of an impairment of embryofetal neuromuscular function and development. The causes of arthrogryposis are multiple, and in newborns, it is difficult to predict the molecular defect as well as the clinical evolution just based on clinical findings. We studied a consecutive series of 13 participants who had amyoplasia, distal arthrogryposis (DA), or syndromic forms of arthrogryposis with normal intellectual development and other motor abilities. The underlying pathogenic variants were identified in 11 out of 13 participants. Correlating the genotype with the clinical features indicated that prenatal findings were specific for DA; this was helpful to identify familial cases, but features were non-specific for the involved gene. Perinatal clinical findings were similar among the participants, except for amyoplasia. Dilatation of the aortic root led to the diagnosis of Loeys–Dietz syndrome (LDS) in one case. The phenotype of DA type 5D (DA5D) and Escobar syndrome became more characteristic at later ages due to more pronounced pterygia. Follow-up indicated that DA type 1 (DA1)/DA type 2B (DA2B) spectrum and LDS had a more favorable course than the other forms. Hand clenching and talipes equinovarus/rocker bottom foot showed an improvement in all participants, and adducted thumb resolved in all forms except in amyoplasia. The combination of clinical evaluation with Next Generation Sequencing (NGS) analysis in the newborn may allow for an early diagnosis and, particularly in the DAs, suggests a favorable prognosis

    Expanding the phenotype of Wiedemann-Steiner syndrome: Craniovertebral junction anomalies

    Full text link
    Wiedemann-Steiner syndrome (WDSTS) is a rare autosomal dominant condition caused by heterozygous loss of function variants in the KMT2A (MLL) gene, encoding a lysine N-methyltransferase that mediates a histone methylation pattern specific for epigenetic transcriptional activation. WDSTS is characterized by a distinctive facial phenotype, hypertrichosis, short stature, developmental delay, intellectual disability, congenital malformations, and skeletal anomalies. Recently, a few patients have been reported having abnormal skeletal development of the cervical spine. Here we describe 11 such individuals, all with KMT2A de novo loss-of-function variants: 10 showed craniovertebral junction anomalies, while an 11th patient had a cervical abnormality in C7. By evaluating clinical and diagnostic imaging data we characterized these anomalies, which consist primarily of fused cervical vertebrae, C1 and C2 abnormalities, small foramen magnum and Chiari malformation type I. Craniovertebral anomalies in WDSTS patients have been largely disregarded so far, but the increasing number of reports suggests that they may be an intrinsic feature of this syndrome. Specific investigation strategies should be considered for early identification and prevention of craniovertebral junction complications in WDSTS patients
    corecore