5 research outputs found

    Nanoscale Contact Mechanics between Two Grafted Polyelectrolyte Surfaces

    Get PDF
    The adhesive and frictional behavior of end-grafted poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) films (brushes) in contact with atomic force microscope tips from which PDMAEMA or poly(methacrylic acid) (PMAA) were grafted has been shown to be a strong function of pH in aqueous solution. The interaction between the brush-coated surfaces is determined by a combination of electrostatic and noncovalent interactions, modulated by the effect of the solvation state on the brush and the resulting area of contact between the probe and the surface. For cationic PDMAEMA-PDMAEMA contacts at low pH, the brushes are highly solvated; a combination of electrostatic repulsion and a high degree of solvation (leading to a significant osmotic pressure) leads to a small area of contact, weak adhesion, and energy dissipation through plowing. As the pH increases, the electrostatic repulsion and the osmotic pressure decrease, leading to an increase in the area of contact and a concomitant increase in the strength of adhesion through hydrophobic interactions; as a consequence, the friction-load relationship becomes nonlinear as shear processes contribute to friction and the mechanics are fitted by DMT theory and, at higher pH, by the JKR model. For PDMAEMA-PMAA, the electrostatic interaction is attractive at neutral pH, leading to a large adhesion force, a large area of contact, and a nonlinear friction-load relationship. However, as the pH becomes either very small or very large, a significant charge is acquired by one of the contacting surfaces, leading to a large amount of bound solvent and a significant osmotic pressure that resists deformation. As a consequence, the area of contact is small, adhesion forces are reduced, and the friction-load relationship is linear, with energy dissipation dominated by molecular plowing

    Evaluation of sensory and biochemical changes in freshwater catfish stored under vacuum and different modified atmospheres.

    Get PDF
    The present study was carried out to compare the influence of six different packaging atmospheres (air, vacuum and MAPs including 5% O2 + 40% CO2 + 55% N2, 5% O2 + 60% CO2 + 35% N2, 5% O2 + 80% CO2 + 15% N2 and 100% CO2) on the biochemical and sensory attributes of freshwater catfish fillets stored at 4 °C. Fillets were monitored for biochemical parameters (pH, total volatile bases nitrogen (TVBN), lipid oxidation) and sensory attributes for 21 days. Proximate and fatty acid composition were also determined in fresh fillets. The sensory quality of all fillets was acceptable during the first 13 ± 1 days of storage in air, 16 ± 1 days of storage in vacuum and MAP1, 18 ± 1 days of storage in MAP2 and 20 ± 1 days of storage in MAP3. The overall sensory scores for fillets which were packed under 100% CO2 were higher than the acceptable limit at the end of storage. It was found that fillets consisted of 5.71 g lipid per 100 g which is susceptible to oxidation due to the high amount of unsaturated fatty acids (63.86%) versus saturated fatty acids (31.14%). Vacuum packed and 100% CO2 fillets showed the lowest TBARS values while air-stored samples showed the highest TBA values. TVBN increased negligibly during storage in all treatments and never exceeded the acceptability limit (35 mg N per 100 g). It can be concluded that 100% CO2 was the best evaluated atmosphere for storage of catfish fillets at 4 °C with superior biochemical and sensory attributes

    Salt Dependence of the Tribological Properties of a Surface-Grafted Weak Polycation in Aqueous Solution

    Get PDF
    The nanoscopic adhesive and frictional behaviour of end-grafted poly[2-(dimethyl amino)ethyl methacrylate] (PDMAEMA) films (brushes) in contact with gold- or PDMAEMA-coated atomic force microscope tips in potassium halide solutions with different concentrations up to 300 mM is a strong function of salt concentration. The conformation of the polymers in the brush layer is sensitive to salt concentration, which leads to large changes in adhesive forces and the contact mechanics at the tip–sample contact, with swollen brushes (which occur at low salt concentrations) yielding large areas of contact and friction–load plots that fit JKR behaviour, while collapsed brushes (which occur at high salt concentrations) yield sliding dominated by ploughing, with conformations in between fitting DMT mechanics. The relative effect of the different anions follows the Hofmeister series, with I − collapsing the brushes more than Br − and Cl − for the same salt concentration

    Investigation of the Frictional Behaviour of End-Grafted Polymer Layers Using Friction Force Microscopy

    No full text

    Frictional properties of a polycationic brush

    No full text
    The frictional behaviour of end-grafted poly[2-(dimethyl amino)ethyl methacrylate] films (brushes) has been shown by friction force microscopy to be a strong function of pH in aqueous solution. Data were acquired using bare silicon nitride and gold-coated tips, and gold coated probes that were functionalized by the deposition of self-assembled monolayers. At the extremes of pH (pH 1⁄4 1, 2, and 12), the friction–load relationship was found to be linear, in agreement with Amontons' law of macroscopic friction. However, at intermediate pH values, the data were fitted by single asperity contact mechanics models; both Johnson–Kendall–Roberts (JKR) and Derjaguin–Muller–Toporov models were observed, with JKR behaviour fitting the data better at relatively neutral pH
    corecore