548 research outputs found

    Wrong Turn in Cyberspace: Using ICANN to Route Around the APA and the Constitution

    Get PDF
    The Internet relies on an underlying centralized hierarchy built into the domain name system (DNS) to control the routing for the vast majority of Internet traffic. At its heart is a single data file, known as the root. Control of the root provides singular power in cyberspace. This Article first describes how the United States government found itself in control of the root. It then describes how, in an attempt to meet concerns that the United States could so dominate an Internet chokepoint, the U. S. Department of Commerce (DoC) summoned into being the Internet Corporation for Assigned Names and Numbers (ICANN), a formally private nonprofit California corporation. DoC then signed contracts with ICANN in order to clothe it with most of the U. S. government\u27s power over the DNS, and convinced other parties to recognize ICANN\u27s authority. ICANN then took regulatory actions that the U. S. Department of Commerce was unable or unwilling to make itself, including the imposition on all registrants of Internet addresses of an idiosyncratic set of arbitration rules and procedures that benefit third-party trademark holders. Professor Froomkin then argues that the use of ICANN to regulate in the stead of an executive agency violates fundamental values and policies designed to ensure democratic control over the use of government power, and sets a precedent that risks being expanded into other regulatory activities. He argues that DoC\u27s use of ICANN to make rules either violates the APA\u27s requirement for notice and comment in rulemaking and judicial review, or it violates the Constitution\u27s nondelegation doctrine. Professor Froomkin reviews possible alternatives to ICANN, and ultimately proposes a decentralized structure in which the namespace of the DNS is spread out over a transnational group of policy partners with DoC

    Could a change in magnetic field geometry cause the break in the wind-activity relation?

    Get PDF
    AAV acknowledges support from the Swiss National Science Foundation through an Ambizione Fellowship. SVJ and SBS acknowledge research funding by the Deutsche Forschungsgemeinschaft under grant SFB 963/1, project A16.Wood et al. suggested that mass-loss rate is a function of X-ray flux (dot{M}∝ F_x^{1.34}) for dwarf stars with Fx ≲ Fx,6 ≡ 106 erg cm-2 s-1. However, more active stars do not obey this relation. These authors suggested that the break at Fx,6 could be caused by significant changes in magnetic field topology that would inhibit stellar wind generation. Here, we investigate this hypothesis by analysing the stars in Wood et al. sample that had their surface magnetic fields reconstructed through Zeeman-Doppler Imaging (ZDI). Although the solar-like outliers in the dot{M} - Fx relation have higher fractional toroidal magnetic energy, we do not find evidence of a sharp transition in magnetic topology at Fx,6. To confirm this, further wind measurements and ZDI observations at both sides of the break are required. As active stars can jump between states with highly toroidal to highly poloidal fields, we expect significant scatter in magnetic field topology to exist for stars with Fx ≳ Fx,6. This strengthens the importance of multi-epoch ZDI observations. Finally, we show that there is a correlation between Fx and magnetic energy, which implies that dot{M} - magnetic energy relation has the same qualitative behaviour as the original dot{M} - Fx relation. No break is seen in any of the Fx - magnetic energy relations.Publisher PDFPeer reviewe
    corecore