40 research outputs found

    Propiconazole is an activator of AHR and causes concentration additive effects with an established AHR ligand

    Get PDF
    Consumers are exposed to pesticide residues and other food contaminants via the diet. Both can exert adverse effects on different target organs via the activation of nuclear receptor pathways. Hepatotoxic effects of the widely used triazole fungicide propiconazole (Pi) are generally attributed to the activation of the constitutive androstane receptor (CAR) or the pregnane X receptor (PXR). We now investigated the effects of Pi on the aryl hydrocarbon receptor (AHR) and possible mixture toxicity when Pi is present in combination with BbF, an AHR ligand. In silico docking simulations indicate that Pi can bind to human AHR. Subsequent dual luciferase reporter gene assays in human HepG2 cells showed that Pi activates the AHR in vitro. This concentration-dependent activation was confirmed by real-time RT-PCR analyses of the model AHR target genes CYP1A1 and CYP1A2 in human HepaRG and HepG2 cells. In addition, induction of CYP1A1 protein levels and enzyme activity were recorded. Similarly, increased mRNA expression and enzyme activity of Cyp1a1 and Cyp1a2 was observed in livers of rats treated with Pi for 28 days via the diet. Gene expression analysis in AHR-knockout HepaRG cells showed no induction of CYP1A1 and CYP1A2, whereas gene expression in CAR-, and PXR-knockout cells was induced. Finally, mixture effects of Pi and BbF were analyzed in human cell lines: modeling of concentration\u2013response curves revealed concentration additivity. In conclusion, our results demonstrate that the triazole Pi is an activator of AHR in silico, in vitro and in vivo and causes additive effects with an established AHR ligand

    A walk in the PARC:developing and implementing 21st century chemical risk assessment in Europe

    Get PDF
    Current approaches for the assessment of environmental and human health risks due to exposure to chemical substances have served their purpose reasonably well. Nevertheless, the systems in place for different uses of chemicals are faced with various challenges, ranging from a growing number of chemicals to changes in the types of chemicals and materials produced. This has triggered global awareness of the need for a paradigm shift, which in turn has led to the publication of new concepts for chemical risk assessment and explorations of how to translate these concepts into pragmatic approaches. As a result, next-generation risk assessment (NGRA) is generally seen as the way forward. However, incorporating new scientific insights and innovative approaches into hazard and exposure assessments in such a way that regulatory needs are adequately met has appeared to be challenging. The European Partnership for the Assessment of Risks from Chemicals (PARC) has been designed to address various challenges associated with innovating chemical risk assessment. Its overall goal is to consolidate and strengthen the European research and innovation capacity for chemical risk assessment to protect human health and the environment. With around 200 participating organisations from all over Europe, including three European agencies, and a total budget of over 400 million euro, PARC is one of the largest projects of its kind. It has a duration of seven years and is coordinated by ANSES, the French Agency for Food, Environmental and Occupational Health & Safety

    Effects of a penthiopyrad and picoxystrobin fungicide mixtureon phoma stem canker (Leptosphaeria spp.) on UK winteroilseed rape

    Get PDF
    © Koninklijke Nederlandse Planteziektenkundige Vereniging 2016. This is a pre-copyedited, author-produced PDF of an article accepted for publication in European Journal of Plant Pathology following peer review. The final publication [Sewell, T.R., Moloney, S., Ashworth, M. et al., European Journal of Plant Pathology (2016) 145: 675-685, first published online April 5, 2016] is available at Springer via doi: http://dx.doi.org/10.1007/s10658-016-0916-8In the UK, fungicides are often used to controlphoma stem canker on winter oilseed rape. Field trialswere established near Boxworth, Cambridgeshire for fourcropping seasons (2011/2012, 2012/2013, 2013/2014 and2014/15) to test the efficacy of a new fungicide mixtureRefinzar® (penthiopyrad + picoxystrobin) by comparisonto an existing fungicide Proline 275® (prothioconazole)against phoma stem canker (Leptosphaeria spp.) andthe effect on winter oilseed rape (cv. Catana) yield. Ineach season, weather data were collected from a weatherstation at Boxworth and the release of ascospores wasmonitored using a nearby Burkard spore sampler. Thepatterns of ascospore release differed between seasonsand related to weather conditions. Fungicidespenthiopyrad + picoxystrobin and prothioconazole wereapplied in October/November when 10 % of plants hadphoma leaf spotting (T1, early), 4/8 weeks after T1 (T2,late) or at both T1 and T2 (combined). When phoma leafspot symptoms were assessed in autumn/winter,penthiopyrad + picoxystrobin and prothioconazole bothdecreased numbers of phoma leaf spots caused byL. maculans; there were few leaf spots caused byL. biglobosa. Penthiopyrad + picoxystrobin andprothioconazole both reduced phoma stem canker severitybefore harvest compared to the untreated control butdid not increase yield in these seasons when epidemicswere not severe. In 2013/2014, the presence ofL. maculans and L. biglobosa in upper stem lesions orstem base cankers was determined by species-specificPCR. The proportions of stems with L. maculans DNAwere much greater than those with L. biglobosa DNA forboth upper stem lesions and basal stem cankers. Theseresults suggest that both penthiopyrad + picoxystrobinand prothioconazole can decrease phoma stem cankerseverity on winter oilseed rape in severe disease seasons.Peer reviewe

    Acceptance criteria for new approach methods in toxicology and human health-relevant life science research - part I

    Get PDF
    Every test procedure, scientific and non-scientific, has inherent uncertainties, even when performed according to a standard operating procedure (SOP). In addition, it is prone to errors, defects, and mistakes introduced by operators, laboratory equipment, or materials used. Adherence to an SOP and comprehensive validation of the test method cannot guarantee that each test run produces data within the acceptable range of variability and with the precision and accuracy determined during the method validation. We illustrate here (part I) why controlling the validity of each test run is an important element of experimental design. The definition and application of acceptance criteria (AC) for the validity of test runs is important for the setup and use of test methods, particularly for the use of new approach methods (NAM) in toxicity testing. AC can be used for decision rules on how to handle data, e.g., to accept the data for further use (AC fulfilled) or to reject the data (AC not fulfilled). The adherence to AC has important requirements and consequences that may seem surprising at first sight: (i) AC depend on a test method's objectives, e.g., on the types/concentrations of chemicals tested, the regulatory context, the desired throughput; (ii) AC are applied and documented at each test run, while validation of a method (including the definition of AC) is only performed once; (iii) if AC are altered, then the set of data produced by a method can change. AC, if missing, are the blind spot of quality assurance: Test results may not be reliable and comparable. The establishment and uses of AC will be further detailed in part II of this series.Toxicolog

    Evaluation of 309 Environmental Chemicals Using a Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity Assay

    Get PDF
    The vast landscape of environmental chemicals has motivated the need for alternative methods to traditional whole-animal bioassays in toxicity testing. Embryonic stem (ES) cells provide an in vitro model of embryonic development and an alternative method for assessing developmental toxicity. Here, we evaluated 309 environmental chemicals, mostly food-use pesticides, from the ToxCast™ chemical library using a mouse ES cell platform. ES cells were cultured in the absence of pluripotency factors to promote spontaneous differentiation and in the presence of DMSO-solubilized chemicals at different concentrations to test the effects of exposure on differentiation and cytotoxicity. Cardiomyocyte differentiation (α,β myosin heavy chain; MYH6/MYH7) and cytotoxicity (DRAQ5™/Sapphire700™) were measured by In-Cell Western™ analysis. Half-maximal activity concentration (AC50) values for differentiation and cytotoxicity endpoints were determined, with 18% of the chemical library showing significant activity on either endpoint. Mining these effects against the ToxCast Phase I assays (∼500) revealed significant associations for a subset of chemicals (26) that perturbed transcription-based activities and impaired ES cell differentiation. Increased transcriptional activity of several critical developmental genes including BMPR2, PAX6 and OCT1 were strongly associated with decreased ES cell differentiation. Multiple genes involved in reactive oxygen species signaling pathways (NRF2, ABCG2, GSTA2, HIF1A) were strongly associated with decreased ES cell differentiation as well. A multivariate model built from these data revealed alterations in ABCG2 transporter was a strong predictor of impaired ES cell differentiation. Taken together, these results provide an initial characterization of metabolic and regulatory pathways by which some environmental chemicals may act to disrupt ES cell growth and differentiation

    Present state and future perspectives of using pluripotent stem cells in toxicology research

    Get PDF
    The use of novel drugs and chemicals requires reliable data on their potential toxic effects on humans. Current test systems are mainly based on animals or in vitro–cultured animal-derived cells and do not or not sufficiently mirror the situation in humans. Therefore, in vitro models based on human pluripotent stem cells (hPSCs) have become an attractive alternative. The article summarizes the characteristics of pluripotent stem cells, including embryonic carcinoma and embryonic germ cells, and discusses the potential of pluripotent stem cells for safety pharmacology and toxicology. Special attention is directed to the potential application of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) for the assessment of developmental toxicology as well as cardio- and hepatotoxicology. With respect to embryotoxicology, recent achievements of the embryonic stem cell test (EST) are described and current limitations as well as prospects of embryotoxicity studies using pluripotent stem cells are discussed. Furthermore, recent efforts to establish hPSC-based cell models for testing cardio- and hepatotoxicity are presented. In this context, methods for differentiation and selection of cardiac and hepatic cells from hPSCs are summarized, requirements and implications with respect to the use of these cells in safety pharmacology and toxicology are presented, and future challenges and perspectives of using hPSCs are discussed

    Hepatocarcinogenesis in mice with a conditional knockout of the hepatocyte growth factor receptor c-Met

    No full text
    The receptor for the hepatocyte growth factor/scatter factor (HGF/SF), c-Met, plays a role in tumour promotion, progression and metastasis. In this study, we analysed chemically induced hepatocarcinogenesis in mice lacking a functional HGF receptor in their liver. Control and c-Met deficient mice were injected with a single dose of N-nitrosodiethylamine (DEN, 90 mug/g b.wt.) at 6 weeks of age and mice were subsequently kept on a phenobarbital (PB) containing diet (0.05%) for 35 weeks or on control diet. At the end of the experiment, the carcinogenic response in liver of the animals was monitored. Conditional c-met knockout (KO) mice showed a higher prevalence of macroscopically visible liver tumours and of glutamine synthetase positive and glucose-6-phosphatase deficient lesions in liver. Tumour promotion by PB led to significant increases in the number of preneoplastic and neoplastic lesions in liver of both wild-type and c-met knockout mice, with only minor differences in response. Our results indicate that a defect in c-Met-mediated signaling increases chemically induced tumour initiation in liver but does not significantly affect PB-mediated tumour promotion
    corecore