98 research outputs found

    Modelling mutational landscapes of human cancers in vitro

    Get PDF
    Experimental models that recapitulate mutational landscapes of human cancers are needed to decipher the rapidly expanding data on human somatic mutations. We demonstrate that mutation patterns in immortalised cell lines derived from primary murine embryonic fibroblasts (MEFs) exposed in vitro to carcinogens recapitulate key features of mutational signatures observed in human cancers. In experiments with several cancer-causing agents we obtained high genome-wide concordance between human tumour mutation data and in vitro data with respect to predominant substitution types, strand bias and sequence context. Moreover, we found signature mutations in well-studied human cancer driver genes. To explore endogenous mutagenesis, we used MEFs ectopically expressing activation-induced cytidine deaminase (AID) and observed an excess of AID signature mutations in immortalised cell lines compared to their non-transgenic counterparts. MEF immortalisation is thus a simple and powerful strategy for modelling cancer mutation landscapes that facilitates the interpretation of human tumour genome-wide sequencing data

    Genetic Heterogeneity of Hepatitis C Virus in Association with Antiviral Therapy Determined by Ultra-Deep Sequencing

    Get PDF
    The hepatitis C virus (HCV) invariably shows wide heterogeneity in infected patients, referred to as a quasispecies population. Massive amounts of genetic information due to the abundance of HCV variants could be an obstacle to evaluate the viral genetic heterogeneity in detail.Using a newly developed massive-parallel ultra-deep sequencing technique, we investigated the viral genetic heterogeneity in 27 chronic hepatitis C patients receiving peg-interferon (IFN) α2b plus ribavirin therapy.Ultra-deep sequencing determined a total of more than 10 million nucleotides of the HCV genome, corresponding to a mean of more than 1000 clones in each specimen, and unveiled extremely high genetic heterogeneity in the genotype 1b HCV population. There was no significant difference in the level of viral complexity between immediate virologic responders and non-responders at baseline (p = 0.39). Immediate virologic responders (n = 8) showed a significant reduction in the genetic complexity spanning all the viral genetic regions at the early phase of IFN administration (p = 0.037). In contrast, non-virologic responders (n = 8) showed no significant changes in the level of viral quasispecies (p = 0.12), indicating that very few viral clones are sensitive to IFN treatment. We also demonstrated that clones resistant to direct-acting antivirals for HCV, such as viral protease and polymerase inhibitors, preexist with various abundances in all 27 treatment-naïve patients, suggesting the risk of the development of drug resistance against these agents.Use of the ultra-deep sequencing technology revealed massive genetic heterogeneity of HCV, which has important implications regarding the treatment response and outcome of antiviral therapy

    Dynamics of Hepatitis B Virus Quasispecies in Association with Nucleos(t)ide Analogue Treatment Determined by Ultra-Deep Sequencing

    Get PDF
    [Background and Aims]: Although the advent of ultra-deep sequencing technology allows for the analysis of heretofore-undetectable minor viral mutants, a limited amount of information is currently available regarding the clinical implications of hepatitis B virus (HBV) genomic heterogeneity. [Methods]: To characterize the HBV genetic heterogeneity in association with anti-viral therapy, we performed ultra-deep sequencing of full-genome HBV in the liver and serum of 19 patients with chronic viral infection, including 14 therapy-naïve and 5 nucleos(t)ide analogue(NA)-treated cases. [Results]: Most genomic changes observed in viral variants were single base substitutions and were widely distributed throughout the HBV genome. Four of eight (50%) chronic therapy-naïve HBeAg-negative patients showed a relatively low prevalence of the G1896A pre-core (pre-C) mutant in the liver tissues, suggesting that other mutations were involved in their HBeAg seroconversion. Interestingly, liver tissues in 4 of 5 (80%) of the chronic NA-treated anti-HBe-positive cases had extremely low levels of the G1896A pre-C mutant (0.0%, 0.0%, 0.1%, and 1.1%), suggesting the high sensitivity of the G1896A pre-C mutant to NA. Moreover, various abundances of clones resistant to NA were common in both the liver and serum of treatment-naïve patients, and the proportion of M204VI mutants resistant to lamivudine and entecavir expanded in response to entecavir treatment in the serum of 35.7% (5/14) of patients, suggesting the putative risk of developing drug resistance to NA. [Conclusion]: Our findings illustrate the strong advantage of deep sequencing on viral genome as a tool for dissecting the pathophysiology of HBV infection

    Role of survivin and its splice variants in tumorigenesis

    Get PDF
    Survivin, a unique member of the inhibitor of apoptosis (IAP) protein family, is highly expressed in cancer but is undetectable in nonproliferating normal adult tissues, suggesting a potential role in tumorigenesis. Differential splicing of survivin pre-mRNA results in three new survivin variants, survivin-ΔEx3, survivin-2B, and survivin-3B. Loss of survivin-2B expression was found in the later stage of cancer development, while survivin and survivin-ΔEx3 are not, suggesting a differential role of them in tumour development. In this minireview, the author intends to summarise and discuss the current data relevant to the role of survivin and its splicing variants in tumorigenesis, which may facilitate further investigation in this interesting area

    Safety and pharmacokinetics of recombinant human hepatocyte growth factor (rh-HGF) in patients with fulminant hepatitis: a phase I/II clinical trial, following preclinical studies to ensure safety

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatocyte growth factor (HGF) stimulates hepatocyte proliferation, and also acts as an anti-apoptotic factor. Therefore, HGF is a potential therapeutic agent for treatment of fatal liver diseases. We performed a translational medicine protocol with recombinant human HGF (rh-HGF), including a phase I/II study of patients with fulminant hepatitis (FH) or late-onset hepatic failure (LOHF), in order to examine the safety, pharmacokinetics, and clinical efficacy of this molecule.</p> <p>Methods</p> <p>Potential adverse effects identified through preclinical safety tests with rh-HGF include a decrease in blood pressure (BP) and an increase in urinary excretion of albumin. Therefore, we further investigated the effect of rh-HGF on circulatory status and renal toxicity in preclinical animal studies. In a clinical trial, 20 patients with FH or LOHF were evaluated for participation in this clinical trial, and four patients were enrolled. Subjects received rh-HGF (0.6 mg/m<sup>2</sup>/day) intravenously for 12 to 14 days.</p> <p>Results</p> <p>We established an infusion method to avoid rapid BP reduction in miniature swine, and confirmed reversibility of renal toxicity in rats. Although administration of rh-HGF moderately decreased BP in the participating subjects, this BP reduction did not require cessation of rh-HGF or any vasopressor therapy; BP returned to resting levels after the completion of rh-HGF infusion. Repeated doses of rh-HGF did not induce renal toxicity, and severe adverse events were not observed. Two patients survived, however, there was no evidence that rh-HGF was effective for the treatment of FH or LOHF.</p> <p>Conclusions</p> <p>Intravenous rh-HGF at a dose of 0.6 mg/m<sup>2 </sup>was well tolerated in patients with FH or LOHF; therefore, it is desirable to conduct further investigations to determine the efficacy of rh-HGF at an increased dose.</p

    Survivin Mutant Protects Differentiated Dopaminergic SK-N-SH Cells Against Oxidative Stress

    Get PDF
    Oxidative stress is due to an imbalance of antioxidant/pro-oxidant homeostasis and is associated with the progression of several neurological diseases, including Parkinson's and Alzheimer's disease and amyotrophic lateral sclerosis. Furthermore, oxidative stress is responsible for the neuronal loss and dysfunction associated with disease pathogenesis. Survivin is a member of the inhibitors of the apoptosis (IAP) family of proteins, but its neuroprotective effects have not been studied. Here, we demonstrate that SurR9-C84A, a survivin mutant, has neuroprotective effects against H2O2-induced neurotoxicity. Our results show that H2O2 toxicity is associated with an increase in cell death, mitochondrial membrane depolarisation, and the expression of cyclin D1 and caspases 9 and 3. In addition, pre-treatment with SurR9-C84A reduces cell death by decreasing both the level of mitochondrial depolarisation and the expression of cyclin D1 and caspases 9 and 3. We further show that SurR9-C84A increases the antioxidant activity of GSH-peroxidase and catalase, and effectively counteracts oxidant activity following exposure to H2O2. These results suggest for the first time that SurR9-C84A is a promising treatment to protect neuronal cells against H2O2-induced neurotoxicity

    Postnatal Expansion of the Pancreatic β-Cell Mass Is Dependent on Survivin

    Get PDF
    OBJECTIVE—Diabetes results from a deficiency of functional β-cells due to both an increase in β-cell death and an inhibition of β-cell replication. The molecular mechanisms responsible for these effects in susceptible individuals are mostly unknown. The objective of this study was to determine whether a gene critical for cell division and cell survival in cancer cells, survivin, might also be important for β-cells

    Promotion of Hendra virus replication by microRNA 146a

    Full text link
    Hendra virus is a highly pathogenic zoonotic paramyxovirus in the genus Henipavirus. Thirty-nine outbreaks of Hendra virus have been reported since its initial identification in Queensland, Australia, resulting in seven human infections and four fatalities. Little is known about cellular host factors impacting Hendra virus replication. In this work, we demonstrate that Hendra virus makes use of a microRNA (miRNA) designated miR-146a, an NF-&kappa;B-responsive miRNA upregulated by several innate immune ligands, to favor its replication. miR-146a is elevated in the blood of ferrets and horses infected with Hendra virus and is upregulated by Hendra virus in human cells in vitro. Blocking miR-146a reduces Hendra virus replication in vitro, suggesting a role for this miRNA in Hendra virus replication. In silico analysis of miR-146a targets identified ring finger protein (RNF)11, a member of the A20 ubiquitin editing complex that negatively regulates NF-&kappa;B activity, as a novel component of Hendra virus replication. RNA interference-mediated silencing of RNF11 promotes Hendra virus replication in vitro, suggesting that increased NF-&kappa;B activity aids Hendra virus replication. Furthermore, overexpression of the I&kappa;B superrepressor inhibits Hendra virus replication. These studies are the first to demonstrate a host miRNA response to Hendra virus infection and suggest an important role for host miRNAs in Hendra virus disease
    corecore