10 research outputs found

    XRCC1 is phosphorylated by DNA-dependent protein kinase in response to DNA damage

    Get PDF
    The two BRCT domains (BRCT1 and BRCT2) of XRCC1 mediate a network of protein–protein interactions with several key factors of the DNA single-strand breaks (SSBs) and base damage repair pathways. BRCT1 is required for the immediate poly(ADP–ribose)-dependent recruitment of XRCC1 to DNA breaks and is essential for survival after DNA damage. To better understand the biological role of XRCC1 in the processing of DNA ends, a search for the BRCT1 domain-associated proteins was performed by mass spectrometry of GST-BRCT1 pulled-down proteins from HeLa cell extracts. Here, we report that the double-strand break (DSB) repair heterotrimeric complex DNA-PK interacts with the BRCT1 domain of XRCC1 and phosphorylates this domain at serine 371 after ionizing irradiation. This caused XRCC1 dimer dissociation. The XRCC1 R399Q variant allele did not affect this phosphorylation. We also show that XRCC1 strongly stimulates the phosphorylation of p53-Ser15 by DNA-PK. The pseudo phosphorylated S371D mutant was a much weaker stimulator of DNA-PK activity whereas the non-phosphorylable mutant S371L endowed with a DNA-PK stimulating capacity failed to fully rescue the DSB repair defect of XRCC1-deficient EM9 rodent cells. The functional association between XRCC1 and DNA-PK in response to IR provides the first evidence for their involvement in a common DSB repair pathway

    Optogating a powerful approach to control an ion-channel gate

    No full text
    International audienceno abstrac

    Optical control of an ion channel gate

    No full text
    International audienceThe powerful optogenetic pharmacology method allows the optical control of neuronal activity by photoswitchable ligands tethered to channels and receptors. However, this approach is technically demanding, as it requires the design of pharmacologically active ligands. The development of versatile technologies therefore represents a challenging issue. Here, we present optogating, a method in which the gating machinery of an ATP-activated P2X channel was reprogrammed to respond to light. We found that channels covalently modified by azobenzene-containing reagents at the transmembrane segments could be reversibly turned on and off by light, without the need of ATP, thus revealing an agonist-independent, light-induced gating mechanism. We demonstrate photocontrol of neuronal activity by a light-gated, ATP-insensitive P2X receptor, providing an original tool devoid of endogenous sensitivity to delineate P2X signaling in normal and pathological states. These findings open new avenues to specifically activate other ion channels independently of their natural stimulus

    P2X7 Receptors and TMEM16 Channels Are Functionally Coupled with Implications for Macropore Formation and Current Facilitation

    No full text
    P2X7 receptors (P2X7) are cationic channels involved in many diseases. Following their activation by extracellular ATP, distinct signaling pathways are triggered, which lead to various physiological responses such as the secretion of pro-inflammatory cytokines or the modulation of cell death. P2X7 also exhibit unique behaviors, such as “macropore” formation, which corresponds to enhanced large molecule cell membrane permeability and current facilitation, which is caused by prolonged activation. These two phenomena have often been confounded but, thus far, no clear mechanisms have been resolved. Here, by combining different approaches including whole-cell and single-channel recordings, pharmacological and biochemical assays, CRISPR/Cas9 technology and cell imaging, we provide evidence that current facilitation and macropore formation involve functional complexes comprised of P2X7 and TMEM16, a family of Ca2+-activated ion channel/scramblases. We found that current facilitation results in an increase of functional complex-embedded P2X7 open probability, a result that is recapitulated by plasma membrane cholesterol depletion. We further show that macropore formation entails two distinct large molecule permeation components, one of which requires functional complexes featuring TMEM16F subtype, the other likely being direct permeation through the P2X7 pore itself. Such functional complexes can be considered to represent a regulatory hub that may orchestrate distinct P2X7 functionalities

    A Putative Extracellular Salt Bridge at the Subunit Interface Contributes to the Ion Channel Function of the ATP-gated P2X2 Receptor*

    No full text
    The recent crystal structure of the ATP-gated P2X4 receptor revealed a static view of its architecture, but the molecular mechanisms underlying the P2X channels activation are still unknown. By using a P2X2 model based on the x-ray structure, we sought salt bridges formed between charged residues located in a region that directly connects putative ATP-binding sites to the ion channel. To reveal their significance for ion channel activation, we made systematic charge exchanges and measured the effects on ATP sensitivity. We found that charge reversals at the interfacial residues Glu63 and Arg274 produced gain-of-function phenotypes that were cancelled upon paired charge swapping. These results suggest that a putative intersubunit salt bridge formed between Glu63 and Arg274 contributes to the ion channel function. Engineered cysteines E63C and R274C formed redox-dependent cross-links in the absence of ATP. By contrast, the presence of ATP reduced the rate of disulfide bond formation, indicating that ATP binding might trigger relative movement of adjacent subunits at the level of Glu63 and Arg274, allowing the transmembrane helices to open the channel
    corecore