18 research outputs found

    Climate change is rapidly deteriorating the climatic signal in Svalbard glaciers

    Get PDF
    The Svalbard archipelago is particularly sensitive to climate change due to the relatively low altitude of its main ice fields and its geographical location in the higher North Atlantic, where the effect of Arctic amplification is more significant. The largest temperature increases have been observed during winter, but increasing summer temperatures, above the melting point, have led to increased glacier melt. Here, we evaluate the impact of this increased melt on the preservation of the oxygen isotope (δ18O) signal in firn records. δ18O is commonly used as a proxy for past atmospheric temperature reconstructions, and, when preserved, it is a crucial parameter to date and align ice cores. By comparing four different firn cores collected in 2012, 2015, 2017 and 2019 at the top of the Holtedahlfonna ice field (1100 m a.s.l.), we show a progressive deterioration of the isotope signal, and we link its degradation to the increased occurrence and intensity of melt events. Our findings indicate that, starting from 2015, there has been an escalation in melting and percolation resulting from changes in the overall atmospheric conditions. This has led to the deterioration of the climate signal preserved within the firn or ice. Our observations correspond with the model's calculations, demonstrating an increase in water percolation since 2014, potentially reaching deeper layers of the firn. Although the δ18O signal still reflects the interannual temperature trend, more frequent melting events may in the future affect the interpretation of the isotopic signal, compromising the use of Svalbard ice cores. Our findings highlight the impact and the speed at which Arctic amplification is affecting Svalbard's cryosphere.</p

    Thousand years of winter surface air temperature variations in Svalbard and northern Norway reconstructed from ice-core data

    Get PDF
    Two isotopic ice core records from western Svalbard are calibrated to reconstruct more than 1000 years of past winter surface air temperature variations in Longyearbyen, Svalbard, and Vardø, northern Norway. Analysis of the derived reconstructions suggests that the climate evolution of the last millennium in these study areas comprises three major sub-periods. The cooling stage in Svalbard (ca. 800-1800) is characterized by a progressive winter cooling of approximately 0.9 °C century-1 (0.3 °C century-1 for Vardø) and a lack of distinct signs of abrupt climate transitions. This makes it difficult to associate the onset of the Little Ice Age in Svalbard with any particular time period. During the 1800s, which according to our results was the coldest century in Svalbard, the winter cooling associated with the Little Ice Age was on the order of 4 °C (1.3 °C for Vardø) compared to the 1900s. The rapid warming that commenced at the beginning of the 20th century was accompanied by a parallel decline in sea-ice extent in the study area. However, both the reconstructed winter temperatures as well as indirect indicators of summer temperatures suggest the Medieval period before the 1200s was at least as warm as at the end of the 1990s in Svalbard.
    corecore